Supplemental Screening for Women with Dense Breast Tissue

Public Meeting – December 13, 2013
Agenda

• **Meeting Convened** | 10am-10:15am
• **Presentation of the Evidence and Voting Questions, Q&A** | 10:15am – 11:15am
• **Discussion and Public Comments** | 11:15am – 11:45am
• **Q&A with Roundtable Stakeholders** | 11:45am – 12:30pm
• **Lunch** | 12:30pm – 1:15pm
• **CEPAC Deliberation and Votes on Evidence Questions** | 1:15pm – 2pm
• **Roundtable Discussion** | 2pm – 3:50pm
• **Summary and Closing Remarks** | 3:50pm – 4pm
New England CEPAC

• Funding:
 – NESCSO
 – Regional private payers
 – Regional provider groups

• Goal:
 – To improve the application of evidence to guide practice and policy in New England

• Structure:
 – Evidence review from UCSF faculty; supplemented + updated by ICER
 – Deliberation and voting by CEPAC: independent clinicians, scientific review experts, and public representatives from all six New England states
New England CEPAC, cont.

- CEPAC recommendations designed to support aligned efforts to improve the application of evidence to:
 - Practice
 - Patient/clinician education
 - Quality improvement efforts
 - Clinical guideline development
 - Policy
 - Coverage and reimbursement
 - Medical management policies
 - Benefit design
Supplemental Screening Tests Following Negative Mammography in Women with Dense Breast Tissue

Jeffrey A. Tice, MD
Division of General Internal Medicine
Department of Medicine
University of California San Francisco

December 13, 2013
Women with dense breasts must receive the following language with their results:

“If your mammogram demonstrates that you have dense breast tissue, which could hide small abnormalities, you might benefit from supplementary screening tests, which can include a breast ultrasound screening or a breast MRI examination, or both, depending on your individual risk factors. A report of your mammography results, which contains information about your breast density, has been sent to your physician's office and you should contact your physician if you have any questions or concerns about this report.”

Also requires insurance coverage for supplemental screening with ultrasound:

- MRI considered, but coverage ultimately mandated only for women at very high breast cancer risk (per ACS guidelines)
Legislative Status: Rest of New England

<table>
<thead>
<tr>
<th>State</th>
<th>Status</th>
<th>Notification</th>
<th>Insurance Mandate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>Bill currently in committee</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ME</td>
<td>Multi-stakeholder report recommending "lay letter"</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>NH</td>
<td>2012 notification bill deemed "inexpedient to legislate"</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RI</td>
<td>No activity</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>VT</td>
<td>No activity</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Pink = Law enacted
Red = Law introduced
Blue = Working on law
Green = Law introduced, but no longer active
★ = Coverage mandated
☆ = Coverage mandate introduced
National Efforts

• Breast Density and Mammography Reporting Act:
 – First introduced in House of Representatives in 2011 (DeLauro/Israel)
 – Died in committee
 – Slated to be reintroduced late 2013; companion bill to be introduced in Senate (Feinstein)

• Mammography Quality Standards Act (MQSA):
 • FDA considering amendment to include breast density reporting
What is dense breast tissue?

According to BI-RADS®, breast density ranges among (A) an almost entirely fatty breast, (B) a breast with scattered areas of fibroglandular density, (C) a heterogeneously dense breast, and (D) an extremely dense breast.
Definitions

- **Sensitivity:** % cancers with positive test
- **Specificity:** % no cancers with negative test
- **PPV3:** % of biopsies with cancer
- **Cancer detection rate:** Cancers / 1000 tests
- **Recall rate:** Recalls / 1000 tests
- **Biopsy rate:** Biopsies / 1000 tests

Interval cancer: cancers not found on testing that are diagnosed in the subsequent year (365 days)
Breast Density and Masking

<table>
<thead>
<tr>
<th>Density</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost entirely fatty</td>
<td>88%</td>
</tr>
<tr>
<td>Scattered densities</td>
<td>82%</td>
</tr>
<tr>
<td>Heterogeneously dense</td>
<td>69%</td>
</tr>
<tr>
<td>Extremely dense</td>
<td>62%</td>
</tr>
</tbody>
</table>

Sensitivity: the number of cancers detected divided by the total number of cancers present (usually those diagnosed within 1 year)

NB ~463,000 *film* mammograms
Breast Density and Risk

<table>
<thead>
<tr>
<th>Density</th>
<th>Relative Risk</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost entirely fatty</td>
<td>0.5</td>
<td>10%</td>
</tr>
<tr>
<td>Scattered densities</td>
<td>1 (reference group)</td>
<td>40%</td>
</tr>
<tr>
<td>Heterogeneously dense</td>
<td>1.5</td>
<td>40%</td>
</tr>
<tr>
<td>Extremely dense</td>
<td>2.0</td>
<td>10%</td>
</tr>
</tbody>
</table>
Breast Cancer

• Lifetime risk: 12%
• Mortality declining 2.2% per year from 1990 to 2005
 – 28% overall decline
 – Proportion due to mammography screening versus improvements in treatment remains controversial
Mammography screening benefits

- 9 RCTs >600,000 women followed for 10-20 years
- 20% to 25% relative reduction in breast cancer specific mortality
- Absolute risk reduction 0.18% or 1.8 per 1000 women screened with annual mammography over 15 years
Mammography screening harms

- False positive results
 - ~ 10% each round
 - ~ 50% of women after 10 mammograms
 - Time for repeat imaging and breast biopsies
 - Anxiety, decrease in well being

- Overdiagnosis: 10% to 30% of cancer diagnoses
 - Treatment harms with no benefits

- Radiation exposure (~2 months of background)
 - 1,000 women screened 20 times ages 40 to 75 years
 - 0.86 extra breast cancers and 0.11 extra deaths from BC
Digital Mammography (DM)

- Digital replacing film: more than 90% of facilities in 2013
- DMIST Study 2005
 - 42,760 women with both film and digital mammography
 - ~200,000 with dense breast tissue

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Film</th>
<th>Digital</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>55%</td>
<td>70%</td>
<td>0.02</td>
</tr>
<tr>
<td>Specificity</td>
<td>90%</td>
<td>91%</td>
<td>0.09</td>
</tr>
<tr>
<td>Area under ROC curve</td>
<td>0.68</td>
<td>0.78</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Pisano, NEJM, 2005
Key Point #1

- Digital mammography improves sensitivity, while preserving specificity, in women with dense breast tissue.
Digital Mammography (DM)

- Breast Cancer Surveillance Consortium
- ~870,000 mammograms at a mix of academic and community practices across the United States

<table>
<thead>
<tr>
<th>Density</th>
<th>Sensitivity Film</th>
<th>Sensitivity Digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost entirely fatty</td>
<td>86%</td>
<td>78%</td>
</tr>
<tr>
<td>Scattered densities</td>
<td>85%</td>
<td>87%</td>
</tr>
<tr>
<td>Heterogeneously dense</td>
<td>79%</td>
<td>82%</td>
</tr>
<tr>
<td>Extremely dense</td>
<td>68%</td>
<td>84%</td>
</tr>
</tbody>
</table>
Key Point #2

- Masking (decrease in sensitivity of mammography) is greatly reduced with digital mammography
Four FDA approved technologies

- Magnetic resonance imaging (MRI)
- Hand held ultrasound (HHUS)
- Automated whole breast ultrasound (ABUS)
- Digital breast tomosynthesis (DBT)
Magnetic resonance imaging (MRI)

- Strong magnetic fields
- Cross-sectional images of the breast: 3D

- Concerns
 - IV – invasive
 - IV contrast – allergic reactions
 - False positive results
 - Time and cost
Hand held ultrasound (HHUS)

- High frequency sound waves guided by hand
- Cross-sectional images of the breast: 3D

Concerns
- False positives
- Operator dependent
- Real time availability of radiologists
- Time
- Inadequate reimbursement
Automated breast ultrasound (ABUS)

- High frequency sound waves guided by computer
- Cross-sectional images of the breast: 3D

- Concerns
 - False positives
 - Limits to breast size that can be imaged
 - Time
Digital breast tomosynthesis (DBT)

- Images of the breast from multiple angles
- Cross-sectional images of the breast: 3D

- Concerns
 - Ionizing radiation = 2^{nd} mammogram
 - Approaches to biopsy when only seen on DBT
MRI as supplemental screening

- Recommended and covered for lifetime risk >20%
 - Targeted at hereditary risk such as BRCA1/2 carriers
- No studies in women based on dense breast tissue

- In high risk women: 11 observational studies
 - High cancer detection rate: ~ 23 per 1000 examinations
 - 2 to 3-fold higher than the CDR for DM and/or HHUS
 - High PPV3: ~ 48%
MRI summary

- High levels of uncertainty – no direct evidence
- 1000 women; dense tissue + negative DM
 - Assume DM found 5 cancers; HHUS would find 3 more
 - MRI (CDR is double that of DM+US)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DM</th>
<th>Added with MRI</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall rate per 1000</td>
<td>128</td>
<td>100</td>
<td>High</td>
</tr>
<tr>
<td>Biopsy rate per 1000</td>
<td>17.8</td>
<td>17-36</td>
<td>High</td>
</tr>
<tr>
<td>CDR per 1000</td>
<td>4.2</td>
<td>8</td>
<td>High</td>
</tr>
<tr>
<td>PPV3</td>
<td>24%</td>
<td>22%-48%</td>
<td>High</td>
</tr>
</tbody>
</table>
HHUS as supplemental screening

• Best direct evidence: CT experience
 – Hooley 2012; Weigert 2012; Parris 2013
 – Retrospective observational data: poor quality
 • No sensitivity / interval cancer rate
 • Incomplete reporting of recall rate

• Best indirect evidence: ACRIN 6666
 – Berg 2012
 – Prospective, but in a high risk population that included women with non-dense breast tissue
HHUS results

<table>
<thead>
<tr>
<th>Study</th>
<th>Recall rate per 1000</th>
<th>Biopsy rate per 1000</th>
<th>PPV %</th>
<th>CDR per 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hooley 2012</td>
<td>56.7</td>
<td>56.7</td>
<td>5.7</td>
<td>3.2</td>
</tr>
<tr>
<td>Weigert 2012</td>
<td>49.6</td>
<td>48.3</td>
<td>6.7</td>
<td>3.2</td>
</tr>
<tr>
<td>Parris 2013</td>
<td>33.5</td>
<td>32.8</td>
<td>5.5</td>
<td>1.8</td>
</tr>
<tr>
<td>ACRIN 6666</td>
<td>185.7</td>
<td>88.0</td>
<td>6.8</td>
<td>5.9</td>
</tr>
</tbody>
</table>
HHUS Summary

- Greatest clinical experience / publications
- Low cancer yield per biopsy (PPV3)
- Uncertainty about recall rate

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DM</th>
<th>Added with HHUS</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall rate per 1000</td>
<td>128</td>
<td>98</td>
<td>High</td>
</tr>
<tr>
<td>Biopsy rate per 1000</td>
<td>17.8</td>
<td>49</td>
<td>Low-moderate</td>
</tr>
<tr>
<td>CDR per 1000</td>
<td>4.2</td>
<td>2-3</td>
<td>Low</td>
</tr>
<tr>
<td>PPV3</td>
<td>24%</td>
<td>7%</td>
<td>Low</td>
</tr>
</tbody>
</table>
ABUS as supplemental screening

- 3 relatively small studies
- Wide variation in results
 - Recall rate: 5 to 207 per 1000 examinations
 - Biopsy rate: NR, 12, and 15 per 1000 examinations
 - PPV3: NR, 15% and 31%
 - CDR: 0 to 7.6 per 1000 examinations
ABUS Summary*

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DM</th>
<th>Added with ABUS</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall rate per 1000</td>
<td>128</td>
<td>98</td>
<td>High</td>
</tr>
<tr>
<td>Biopsy rate per 1000</td>
<td>17.8</td>
<td>49</td>
<td>High</td>
</tr>
<tr>
<td>CDR per 1000</td>
<td>4.2</td>
<td>2-3</td>
<td>High</td>
</tr>
<tr>
<td>PPV3</td>
<td>24%</td>
<td>7%</td>
<td>High</td>
</tr>
</tbody>
</table>

* Same as HHUS, but high uncertainty for all estimates
DBT as supplemental screening

- No direct evidence
 - 4 studies of concurrent DM + DBT published in 2013
 - Better sensitivity and specificity than DM alone
 - Decreased recalls and false positive results versus DM alone
 - Only Rose 2013 reported biopsy rate and PPV3

<table>
<thead>
<tr>
<th></th>
<th>DM</th>
<th>DM + DBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopsy rate</td>
<td>15.2</td>
<td>10.6</td>
</tr>
<tr>
<td>PPV3</td>
<td>26.5</td>
<td>24.7</td>
</tr>
<tr>
<td>CDR</td>
<td>3.9</td>
<td>5.4</td>
</tr>
</tbody>
</table>

- Only Ciatto 2013 reported data on subgroup with dense breast tissue and a negative DM (next slide)
DBT in dense tissue, negative DM

- Ciatto 2013: Italian Study
 - Recall rate: 21.3 per 1000 examinations
 - Biopsy rate: Not reported
 - PPV3: Not reported
 - CDR: 2.7 per 1000 examinations
DBT Summary

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DM</th>
<th>Added with DBT</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall rate per 1000</td>
<td>128</td>
<td>20</td>
<td>Moderate-High</td>
</tr>
<tr>
<td>Biopsy rate per 1000</td>
<td>17.8</td>
<td>5</td>
<td>Moderate</td>
</tr>
<tr>
<td>CDR per 1000</td>
<td>4.2</td>
<td>1-3</td>
<td>Moderate</td>
</tr>
<tr>
<td>PPV3</td>
<td>24%</td>
<td>25%</td>
<td>Low-Moderate</td>
</tr>
</tbody>
</table>
Key ongoing studies

- RCT MRI+DM versus DM in women with extremely dense breasts
- RCT HHUS+DM versus DM
- RCT ABUS versus DM
- HHUS and DBT in same women with dense breast tissue (think DMIST)
- BCSC: HHUS+DM versus DM in women with dense breasts
Quantitative summary

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DM</th>
<th>MRI</th>
<th>HHUS/ABUS</th>
<th>DBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall rate</td>
<td>128</td>
<td>100</td>
<td>98</td>
<td>20</td>
</tr>
<tr>
<td>Biopsy rate</td>
<td>17.8</td>
<td>17-36</td>
<td>49</td>
<td>5</td>
</tr>
<tr>
<td>CDR</td>
<td>4.2</td>
<td>8</td>
<td>2-3</td>
<td>1-3</td>
</tr>
<tr>
<td>PPV3</td>
<td>24%</td>
<td>22%-48%</td>
<td>7%</td>
<td>25%</td>
</tr>
</tbody>
</table>
New Evidence (Since Publication of Original Review)

- One single-center HHUS study identified*
- 800 women age 40-49 with dense breasts and negative mammogram
- Incremental CDR: 2.4 per 1000
- As with other studies, follow-up incomplete (interval cancer rates could not be calculated)
- Cost per add’l case of cancer detected: ~$26,000

High degree of certainty

- All forms of supplemental screening find additional cancers
- Most of the cancers are small, lymph node negative cancers that are potentially curable
- MRI finds the most cancers (highest sensitivity)
- DBT has few false positives (low recall rate, high specificity)
- HHUS has many false positive biopsies (lowest PPV3 or cancer yield per biopsy)
Overall summary of supplemental screening in dense breast tissue

- No studies with breast cancer survival outcomes
- No high quality studies report the test characteristics for any of the technologies in women with dense breast tissue and a negative mammogram
- MRI: most sensitive; more than doubles the CDR; reasonable PPV3; but most uncertainty
- HHUS: most experience and study data; low PPV3 (7%: many unnecessary biopsies); likely more false positives than reported in published studies.
Overall summary 2

- **ABUS**: sparse, heterogeneous data. For our analysis anchoring on HHUS results
- **DBT**: Low false positive rate; low biopsy rate; high PPV3; but no direct data as supplemental screening
- Uncertain about the proportion of cancers detected by supplemental screening that represent
 - Cancers that will be cured because of early detection
 - Cancers that would have been cured if detected later by the patient or through subsequent screening
 - Overdiagnosis
Key comments received

- BI-RADS Fifth Edition (January 2014)
 - New language for density and assessment
- Hologic
 - Use of DBT as first-line screen rather than after DM
 - Efficient, reduces false positives
 - 2D reconstruction algorithms FDA approved May 2013
 - No increase in radiation over DM
- Assessment biased
 - Against mammography, MRI, HHUS, ABUS, DBT
 - In favor of mammography, MRI, HHUS, ABUS, DBT
- New data are coming: don’t rush to judgment
CLINICAL GUIDELINES/COVERAGE POLICIES
Guidelines (ACS, NCCN, ACR)

- NCCN considers evidence insufficient to support routine supplemental screening in women with dense breasts using any modality
- HHUS: Recommended by ACR
- ABUS: No recommendations
- MRI: Recommended by ACR, ACS, and NCCN only in women at very high breast cancer risk
- DBT: NCCN considers early evidence promising but insufficient to recommend for screening or diagnosis
Coverage Policies

- **HHUS/ABUS:** No regional public/private policies
 - Humana: no coverage for ABUS (investigational)

- **MRI:** Generally limited to women at very high breast cancer risk:
 - MassHealth: no coverage in asymptomatic, average-risk women
 - BCBSMA: considered investigational in women with dense breasts, breast implants, or scarring after treatment

- **DBT:** Generally not covered (investigational)
 - Connecticare: coverage w/prior authorization
Model of Clinical and Economic Outcomes of Supplemental Screening in Women with Dense Breast Tissue

Daniel A. Ollendorf, ARM, MPH
Institute for Clinical and Economic Review

December 13, 2013
Model Overview

- Population-based model of screening-eligible* New England women, age 40-74, receiving:
 - Mammographic screening (in all women, DM vs FM)
 - Supplemental screening (BI-RADS 3 or 4 density and negative mammogram):
 - 46% of all NE women with negative mammograms: ~1.4 million
 - Heterogeneously dense: ~1.2 million; Extremely dense: ~250,000

- Supplemental modalities: HHUS/ABUS, MRI, DBT†

*Excludes: personal hx of breast cancer, hx of mantle radiation to chest, presence of genetic risk factors
†HHUS: handheld ultrasound; ABUS: automated breast ultrasound; MRI: magnetic resonance imaging; DBT: digital breast tomosynthesis
Model Overview

• Focus on 1-year “diagnostic pathway” for cancer detection:
 – Mammographic and supplemental screening
 – Additional diagnostic imaging - “Recalls”
 – Biopsy

• Outcomes of interest:
 – Recall/biopsy rates
 – Cancers detected
 – False positives
 – Interval cancers

• Cancer treatment not considered
Breast Cancer Risk

• Women entering the model were further placed into risk categories, based on:
 – Breast density, age, family history (1st degree relative)

• Calculated using 5-year risks for women with dense breasts from BCSC Risk Calculator*:
 – **Low** (age 40-49, no family hx): <1.7% (risk assumed in model: 1%)
 – **Moderate** (age 40-49 w/family hx OR age 50+, no family hx): 1.7-3.0% (risk assumed in model: 2.5%)
 – **High** (age 50+ w/family hx): >3.0% (risk assumed in model: 5.0%)

Breast Cancer Risk: New England Women w/Dense Breast Tissue & Negative DM
Key Assumptions

- Perfect compliance with mammographic and supplemental screening
- All positive supplemental screening tests result in biopsy
- Supplemental tests detect:
 - Percentage of cancers that would become interval cancers
 - Additional cancers not identified by screening mammography
- HHUS and ABUS have equivalent clinical performance
- Supplemental screening with DBT would include repeat DM
- Between 10% and 30% of additional cancers detected by supplemental screening may be “overdiagnosis”
Costs

- Digital mammographic screening
 - Medicare Fee Schedule

- Supplemental screening
 - MRI & HHUS: Medicare Fee Schedule
 - ABUS: HHUS + add’l code for 3D views
 - DBT: DM + $50 “patient contribution”

- Additional diagnostic imaging/biopsy
 - Recalls following screening mammography
 - Biopsy costs after positive supplemental screening
 - Women with interval cancers presenting clinically
Impact of Supplemental Screening: Women at Low Breast Cancer Risk

- Low: 163,333 (13%)
- Moderate: 676,745 (54%)
- High: 410,507 (33%)
Results: Incremental Effects of Supplemental Screening (Low Risk)

<table>
<thead>
<tr>
<th>Outcome (per 1,000 screened)</th>
<th>DM Alone</th>
<th>DM+MRI</th>
<th>DM+HHUS/ABUS</th>
<th>DM+DBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancers Detected (True Positives)</td>
<td>1.6</td>
<td>+3.4</td>
<td>+1.8</td>
<td>+1.5</td>
</tr>
<tr>
<td>False Positive Biopsy</td>
<td>4.6</td>
<td>+19.1</td>
<td>+23.3</td>
<td>+6.2</td>
</tr>
<tr>
<td>Cancers Missed (Interval Cancers)</td>
<td>0.4</td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>Cost (per Woman Screened, $)</td>
<td>185</td>
<td>+657</td>
<td>+124/+206</td>
<td>+206</td>
</tr>
</tbody>
</table>
Impact of Supplemental Screening: Women at Moderate Breast Cancer Risk
Results: Incremental Effects of Supplemental Screening (Moderate Risk)

<table>
<thead>
<tr>
<th>Outcome (per 1,000 screened)</th>
<th>DM Alone</th>
<th>DM+MRI</th>
<th>DM+HHUS/ABUS</th>
<th>DM+DBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancers Detected (True Positives)</td>
<td>3.9</td>
<td>+6.5</td>
<td>+4.4</td>
<td>+4.1</td>
</tr>
<tr>
<td>False Positive Biopsy</td>
<td>11.6</td>
<td>+26.1</td>
<td>+46.9</td>
<td>+12.2</td>
</tr>
<tr>
<td>Cancers Missed (Interval Cancers)</td>
<td>1.1</td>
<td>(1.0)</td>
<td>(0.9)</td>
<td>(0.8)</td>
</tr>
<tr>
<td>Cost (per Woman Screened, $)</td>
<td>193</td>
<td>+666</td>
<td>+148/+231</td>
<td>+214</td>
</tr>
</tbody>
</table>
Impact of Supplemental Screening: Women at High Breast Cancer Risk

- Low: 410,507 (33%)
- Moderate: 676,745 (54%)
- High: 163,333 (13%)
Results: Incremental Effects of Supplemental Screening (High Risk)

<table>
<thead>
<tr>
<th>Outcome (per 1,000 screened)</th>
<th>DM Alone</th>
<th>DM+MRI</th>
<th>DM+HHUS/ABUS</th>
<th>DM+DBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancers Detected (True Positives)</td>
<td>7.9</td>
<td>+10.6</td>
<td>+6.8</td>
<td>+6.2</td>
</tr>
<tr>
<td>False Positive Biopsy</td>
<td>23.2</td>
<td>+31.9</td>
<td>+65.0</td>
<td>+14.5</td>
</tr>
<tr>
<td>Cancers Missed (Interval Cancers)</td>
<td>2.1</td>
<td>(2.1)</td>
<td>(1.8)</td>
<td>(1.7)</td>
</tr>
<tr>
<td>Cost (per Woman Screened, $)</td>
<td>199</td>
<td>+676</td>
<td>+167/+250</td>
<td>+219</td>
</tr>
</tbody>
</table>
Incremental Effects, by Breast Cancer Risk

Outcome (per 1,000 screened)

- HHUS/ABUS
- MRI
- DBT

Low Risk
- Cancers Detected
- FP Biopsy

Moderate Risk
- Cancers Detected
- FP Biopsy

High Risk
- Cancers Detected
- FP Biopsy
Budget Impact of Supplemental Screening with MRI

- **Billions**: $0.0, $0.2, $0.4, $0.6, $0.8, $1.0, $1.2, $1.4, $1.6
- **Categories**: DM, Overall, High-Risk Only
- **Colors**: Red (Supplemental Screening), Blue (DM)
Budget Impact of Supplemental Screening with HHUS

Billions

$0.0 $0.2 $0.4 $0.6 $0.8 $1.0 $1.2 $1.4 $1.6

DM Overall High-Risk Only

- Supplemental Screening
- DM

Comparative Effectiveness Public Advisory Council
Budget Impact of Supplemental Screening with ABUS

- $0.0
- $0.2
- $0.4
- $0.6
- $0.8
- $1.0
- $1.2
- $1.4
- $1.6

Billions

- DM
- Overall
- High-Risk Only

Supplemental Screening
DM
Budget Impact of Supplemental Screening with DBT

- DM
- Overall
- High-Risk Only

Billions

- Supplemental Screening
- DM
Budget Impact of Supplemental Screening, All Modalities (High Risk Only)
Cost per Additional Case of Cancer Detected

<table>
<thead>
<tr>
<th>Risk</th>
<th>HHUS</th>
<th>ABUS</th>
<th>MRI</th>
<th>DBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>$67,916</td>
<td>$113,320</td>
<td>$194,713</td>
<td>$134,039</td>
</tr>
<tr>
<td>Moderate</td>
<td>$33,957</td>
<td>$52,937</td>
<td>$102,259</td>
<td>$52,874</td>
</tr>
<tr>
<td>High</td>
<td>$24,488</td>
<td>$36,613</td>
<td>$63,489</td>
<td>$35,189</td>
</tr>
<tr>
<td>Overall</td>
<td>$37,786</td>
<td>$59,860</td>
<td>$112,753</td>
<td>$62,095</td>
</tr>
</tbody>
</table>
Cost-Effectiveness Benchmarks

<table>
<thead>
<tr>
<th>Modality</th>
<th>Population</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI+Mammography vs. Mammography Alone</td>
<td>Women 25-70 with BRCA mutations</td>
<td>$124,000 per add’l breast cancer detected</td>
<td>Saadatmand et al., JNCI August 2013</td>
</tr>
<tr>
<td>HHUS+Mammography vs. Mammography Alone</td>
<td>Women 40-49 with dense breasts and negative mammogram</td>
<td>$26,000 per add’l breast cancer detected</td>
<td>Venturini et al., Radiology August 2013</td>
</tr>
</tbody>
</table>
Model Limitations

- Assumption of perfect compliance with mammographic and supplemental screening likely overestimates of cancer detection and cost
- Supplemental use of DBT vs. use as replacement for DM alone in all women likely overestimate of cost
- Estimates of cancer detection for supplemental modalities extrapolated from different populations:
 - E.g., MRI studies in very high-risk women
Summary

- Clinical tradeoffs apparent with each supplemental modality:
 - MRI detects the greatest number of cancers, and is most expensive
 - HHUS/ABUS is lowest cost to implement, and generates the greatest number of false-positive biopsies
 - DBT has lowest FP biopsy rate, but evidence base does not involve use as a supplemental screening test

- Greatest cancer yield and smallest budget impact projected with most selective application of supplemental screening
 - Women ages 50+ and close family history
Thank you!
Additional slides
Results: Digital vs. Film Mammography (Dense Breasts)

<table>
<thead>
<tr>
<th>Outcome (per 1,000 screened)</th>
<th>Film</th>
<th>Digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recalls</td>
<td>120.0</td>
<td>128.0</td>
</tr>
<tr>
<td>Biopsies Performed</td>
<td>16.2</td>
<td>17.8</td>
</tr>
<tr>
<td>Cancers Detected (True Positives)</td>
<td>3.9</td>
<td>4.2</td>
</tr>
<tr>
<td>False Positive (with Biopsy)</td>
<td>12.3</td>
<td>13.6</td>
</tr>
<tr>
<td>False Positive (without Biopsy)</td>
<td>103.8</td>
<td>110.2</td>
</tr>
<tr>
<td>Cancers Missed (Interval Cancers)</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Cost (per Woman Screened, $)</td>
<td>126</td>
<td>191</td>
</tr>
</tbody>
</table>
Results: Supplemental Screening (Overall Population)

<table>
<thead>
<tr>
<th>Outcome (per 1,000 screened)</th>
<th>DM+HHUS /ABUS</th>
<th>DM+MRI</th>
<th>DM+DBT</th>
<th>DM Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopsies Performed</td>
<td>62.2</td>
<td>48.0</td>
<td>31.5</td>
<td>17.8</td>
</tr>
<tr>
<td>Cancers Detected (True Positives)</td>
<td>8.0</td>
<td>10.1</td>
<td>7.6</td>
<td>4.2</td>
</tr>
<tr>
<td>False Positive Biopsy</td>
<td>54.2</td>
<td>37.9</td>
<td>23.9</td>
<td>13.6</td>
</tr>
<tr>
<td>Cancers Missed (Interval Cancers)</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Cost (per Woman Screened, $)</td>
<td>333/415</td>
<td>855</td>
<td>403</td>
<td>191</td>
</tr>
</tbody>
</table>
Overall Budget Impact to NE (DM+Supplemental)
Impact of MRI Supplemental Screening (Extremely Dense Only)

<table>
<thead>
<tr>
<th>Risk</th>
<th># Patients</th>
<th>Incremental $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>96,138</td>
<td>$63,168,296</td>
</tr>
<tr>
<td>Moderate</td>
<td>108,481</td>
<td>$72,288,785</td>
</tr>
<tr>
<td>High</td>
<td>23,566</td>
<td>$15,919,515</td>
</tr>
<tr>
<td>TOTAL</td>
<td>228,186</td>
<td>$151,376,597</td>
</tr>
</tbody>
</table>