The New England Comparative Effectiveness Public Advisory Council
Public Meeting – June 20, 2014

Management of Patients with Opioid Dependence:
A Review of Clinical, Delivery System, and Policy Options

Draft Report – May 2014

Authored by:

ICER
INSTITUTE FOR CLINICAL AND ECONOMIC REVIEW
Table of Contents

Executive Summary .. 3
1. Introduction .. 14
2. Background .. 16
3. Regulations, Restrictions, and Access to Care in New England ... 21
5. Clinical Guidelines and Policy Statements ... 38
6. Evidence Review .. 44
7. Economic Evaluation .. 59
8. Real World Perspectives on Barriers, Innovations, & Opportunities in New England 73
9. Questions and Discussion .. 81
References .. 82
Appendices .. 96
Appendix A .. 97
Appendix B .. 99
Appendix C .. 108
Executive Summary

Background

Opioid dependence and addiction have reached a critical level in the United States, driven by overprescribing and diversion of opioid painkillers, as well as the low cost, increased potency, and widespread availability of heroin. The societal impact of this growing tide of opioid dependence is substantial in terms of costs related to treatment, lost work productivity, criminal activity, and social welfare expenditure (Hall, 2006).

Medication-assisted treatment options for opioid dependence

The goals of treatment for opioid dependence include a decrease in illicit opioid use, decreased mortality, and reductions in criminal activity (Thomas, 2014). Treatment options include methadone, buprenorphine, buprenorphine/naloxone (Suboxone®), and naltrexone (Revia®, Vivitrol®). Characteristics and uses of these agents are described in further detail in Table ES1 on the following page.

Federal law restricts the dispensing of methadone to federal- and state-approved opioid treatment programs (OTPs). OTPs are licensed and accredited opioid agonist treatment programs that dispense methadone according to highly structured protocols as determined by the federal and state government, including the Department of Health and Human Services (HHS), the Drug Enforcement Agency (DEA), and various state agencies. A summary of federal and state requirements pertaining to patient admission, methadone dosing and abuse concerns, patient evaluation, and the provision of social supportive services is included in the full report.

Office-based prescriptions of opioid replacement therapy with buprenorphine alone or Suboxone is also restricted by federal and state regulations. The passing of the federal Drug Addiction Treatment Act (DATA) of 2000 allows qualified physicians to obtain a waiver (also known as an “X” license) to prescribe and/or dispense opioid replacement therapy after receiving special training. Due to abuse and diversion concerns, physicians with a waiver may not treat more than 30 patients concurrently, but can apply for a second waiver after one year to treat up to 100 patients at one time.
Table ES1. Summary characteristics of medications for the treatment of opioid dependence.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Methadone</th>
<th>Buprenorphine/naloxone</th>
<th>Naltrexone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand name</td>
<td>Methadose</td>
<td>Suboxone, Zubsolv</td>
<td>Revia, Vivitrol</td>
</tr>
<tr>
<td>Class</td>
<td>Full agonist</td>
<td>Partial agonist/antagonist</td>
<td>Full antagonist</td>
</tr>
<tr>
<td>Administration</td>
<td>Oral liquid</td>
<td>Sublingual film/tablet</td>
<td>Oral tablet/depot injection</td>
</tr>
<tr>
<td>Use and effects</td>
<td>Taken once daily to alleviate cravings and withdrawal symptoms</td>
<td>Taken once daily to alleviate cravings and withdrawal symptoms</td>
<td>Taken once daily or by monthly injection to decrease rewarding effects of opioids</td>
</tr>
<tr>
<td>Usual effective dose</td>
<td>20 - 100 mg/day</td>
<td>8 - 24 mg/day (Suboxone)</td>
<td>50 - 100 mg/day (Revia)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.7 – 11.4 mg/day (Zubsolv)</td>
<td>380 mg/month (Vivitrol)</td>
</tr>
<tr>
<td>Prescription source</td>
<td>Federally regulated drug treatment clinics</td>
<td>Federally regulated drug treatment clinics; licensed physicians’ offices</td>
<td>Federally regulated drug treatment clinics; physicians’ offices</td>
</tr>
<tr>
<td>How dispensed</td>
<td>On site at federally regulated drug treatment clinics; take-home doses permitted for patients with documented adherence and negative drug urine screens</td>
<td>Community pharmacies; on site at federally regulated drug treatment clinics</td>
<td>Physicians’ offices; on site at federally regulated treatment clinics</td>
</tr>
<tr>
<td>Advantages</td>
<td>High strength and efficacy</td>
<td>Eligible for prescription doses up to 1 month; avoidance of specialty clinics; decreased abuse liability</td>
<td>Not addictive or sedating, and without physical dependence; avoidance of daily dosing</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>High abuse and diversion potential; requires daily visits to approved outpatient clinics</td>
<td>Some abuse potential; risk of precipitated withdrawal with injection</td>
<td>Poor patient compliance; treatment requires initial abstinence</td>
</tr>
<tr>
<td>Price for 30 days of treatment (based on average wholesale price estimates)</td>
<td>Generic liquid: $15</td>
<td>Generic tablet: $600*</td>
<td>Generic tablet: $200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suboxone: $500</td>
<td>Revia: $660</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zubsolv: $500</td>
<td>Vivitrol: $1,400</td>
</tr>
</tbody>
</table>

* According to Red Book Online®, the average wholesale price for generic buprenorphine/naltrexone does not appear to be less than the current pricing for Suboxone.

Access to Treatment in New England

Current provider capacity in New England is not sufficient to meet patient need for opioid dependence treatment. For example, data from SAMHSA’s National Survey on Drug Use and Health (NSDUH) from 2009-2012 indicates that 133,000 New Englanders are abusing or dependent on opioids, of whom 70% meet criteria for treatment but are not currently receiving it (SAMHSA, 2013c). The NSDUH survey indicates that approximately 2,000 individuals in New England were wait-listed for treatment in 2012; interviews with regional experts and policymakers suggest that this is a conservative estimate.

Geographic barriers to access are an important consideration across New England. For example, Figure ES1 below provides a map of available OTPs (in red) and office-based Suboxone programs (in blue) in the state of Vermont. As can be seen in the figure, patients in certain locations (e.g., Bennington and Franklin counties) have few or no treatment options available to them, and must therefore travel great distances for either prescriptions or daily facility-based treatment. Similar maps are available for the other New England states in Appendix C of the full report.

Figure ES1. Map of available substance abuse facilities and office-based Suboxone programs in Vermont

Red: substance abuse facilities
Blue: office-based programs
To help understand the status of treatment for opioid dependence in New England, ICER surveyed 32 federally certified OTPs, independent officer-based Suboxone and buprenorphine prescribers, detoxification centers, residential treatment providers, and outpatient counseling programs. Respondents cited many challenges to providing high quality health care to patients with opioid dependence. When asked to rank the extent to which different factors served as a barrier to providing treatment, respondents listed insurance coverage, efficiency of referral pathways (e.g. emergency room, court system, etc.), and regulatory structure and restrictions for practice (e.g. physician education and patient management caps for buprenorphine, regulation of methadone clinics) as the most significant obstacles. Many respondents also noted that patients lack the ability -- for geographic, financial, or other reasons -- to gain rapid access to treatment with either methadone or buprenorphine/Suboxone. The treatment choice selected, therefore, is usually the option that the patient can best afford and access. Complete survey results are described in the full report.

Evidence Review

We conducted a review of published evidence on the comparative effectiveness and value of MAT for the treatment of opioid dependence, which was framed according to multiple questions of policy interest in New England. Where available, considerations regarding adolescents were highlighted, as this was felt to be a subpopulation of high interest to clinicians and policymakers. The evidence is summarized briefly below; details on review methods as well as specific systematic reviews and key studies identified can be found in the full report.

Maintenance versus Short-Term (<30 Days) Detoxification

A 2009 Cochrane systematic review of clinical trials found consistently superior outcomes for maintenance treatment approaches compared to detoxification. Maintenance was associated with better treatment retention and lower rates of illicit drug use compared to patients who were detoxified as their primary management approach. Other studies not included in the Cochrane review have produced similar findings. Retention in therapy at approximately one year varies widely across studies, but on average approximately two-thirds of patients on maintenance therapy remain on therapy, although approximately 50% of patients have evidence of illicit drug use during that time. The relative benefits of maintenance over detoxification were also apparent in the results from an RCT comparing a 14-day taper of Suboxone to 12-week maintenance Suboxone treatment in 152 adolescents, in which retention was over three times greater in the latter treatment group (Woody, 2008).

Comparative Effectiveness of Methadone, Buprenorphine, and Naltrexone

Both a recent Cochrane review as well as additional studies of maintenance treatment options consistently found that there are no major differences in mortality or illicit drug use achieved with methadone versus Suboxone or buprenorphine (in any form). However, methadone appears to be
associated with greater retention in treatment compared to buprenorphine in either flexible or low, fixed doses. In contrast, naltrexone appears to be no better than placebo at retaining patients in treatment, although limited data suggest that long-acting forms (injectable or implantable) may have advantages over oral naltrexone in this regard. The performance of these three medications across key measures of effectiveness over 3-12 months of follow-up is summarized in Table ES2 below.

Table ES2. Summary measures of effectiveness of medications for opioid dependence treatment over 3-12 months of follow-up.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Methadone</th>
<th>Buprenorphine/Suboxone</th>
<th>Naltrexone/Vivitrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality (%)</td>
<td><1% (range: 0-6%)</td>
<td><1% (range: 0-2%)</td>
<td>No deaths reported</td>
</tr>
<tr>
<td>Use of Illicit opioids (mean # positive urine tests)</td>
<td>12 (range: 3-25)</td>
<td>12 (range: 3-25)</td>
<td>Not reported</td>
</tr>
<tr>
<td>Retention in treatment (%)</td>
<td>63% (range: 54-71%)</td>
<td>52% (range: 40-65%)</td>
<td>28% (range: 16-30%)</td>
</tr>
</tbody>
</table>

Dosing and Duration Protocols

Studies examining dosing and duration of maintenance treatment have found both methadone (~100 mg/day) and Suboxone (16-32 mg/day) have clear dose thresholds above which clinical outcomes no longer improve. In terms of dosing frequency, daily methadone appears to produce better outcomes than less frequent dosing, while the dosing frequency of buprenorphine appears to make little difference in outcomes. Data suggest that dose tapering regimens with either methadone or Suboxone have limited success, but that longer tapers are superior to shorter-duration tapers.

Important Components of Treatment

Available evidence suggests that several types of positive incentives (e.g., contingency vouchers and rewards), as well as negative incentives (e.g., mandatory medication tapers for missed appointments), appear to improve patient retention in treatment. Evidence on the effectiveness of active, goal-oriented therapy such as cognitive-behavioral and interpersonal therapy is mixed; however, interventions to improve counseling adherence and the use of visual aids for goal-setting and tracking may improve treatment compliance. Supervised medication consumption and more frequent dispensing do not appear to improve adherence to treatment, in part because these interventions tend to be reserved for individuals with existing non-adherence patterns.
Delivery Models

Alternative delivery mechanisms for counseling in opioid dependence management (e.g., telephonic coaching, group therapy by videoconference) appear to produce similar rates of treatment retention and illicit drug use relative to in-person counseling. Wait-list maintenance interventions and pilot, office-based methadone programs appear to produce outcomes comparable to clinic-based care. Provision of opioid dependence management in alternative settings (e.g., primary care, office-based clinics) with adjunct services appears to retain patients at comparable or better rates relative to standard treatment approaches.

Simulation Model of Clinical and Economic Outcomes of Opioid Dependence Treatment

We estimated the clinical and economic outcomes of different opioid dependence management options using two approaches: a cohort model and a population-based budget impact model for New England. Methods for both approaches are described in detail in the full report and summarized briefly here.

Cohort Model

The cohort model assessed the comparative value of different approaches to treating opioid dependence among 1,000 hypothetical patients entering treatment. Model outcomes and costs were calculated over a two-year time horizon. Each patient could have one of four possible outcomes of treatment, as listed below:

- In treatment
- Out of treatment, drug-free
- Out of treatment, relapsed
- Dead

We adopted a societal perspective for this analysis. Costs therefore included substance abuse drug therapy and related services (using Medicaid payment benchmarks), other health care expenditures, and estimates of the “social costs” of dependency in law enforcement, victimization, and productivity loss.

Two-year outcomes and costs among 1,000 hypothetical individuals entering treatment can be found in Table ES3 on page 10. The model results suggest that, of 1,000 initial patients, approximately 630 receiving methadone maintenance would be retained in treatment after two years versus approximately 520 for Suboxone maintenance. The naltrexone tapering strategies would retain 500-550 of an initial 1,000 patients. Use of Vivitrol or oral naltrexone alone produced the lowest retention rates of approximately 420 and 280 per 1,000 respectively. Rates of death were <1% for all strategies except
Vivitrol and oral naltrexone alone (12-16 per 1,000), reflecting higher mortality rates associated with relapse.

Two-year costs of methadone drug therapy (~$700) were much lower than drug costs for all other strategies except oral naltrexone alone. In contrast, costs of other substance abuse services for methadone maintenance (~$14,000) were 2-7 times higher than costs of maintenance with other strategies, reflecting the regulated intensity of methadone-based care. This difference was counteracted somewhat by lower costs of other health care services for methadone versus all other strategies, reflecting reduced costs of these services among patients retained in treatment. The sum of all two-year health care costs did not substantially differ across maintenance treatment strategies (range: $32,000 - $39,000). While not reflected in the table, the two-year health care costs for relapsed or dead patients were estimated to be nearly $40,000, suggesting that the additional costs for substance abuse treatment, with any form of treatment, will be entirely offset within the first two years by reductions in other health care costs, even considering the imperfect ability of maintenance therapy to retain patients over time.

When the impact of maintenance therapy on broader social costs was added to the calculations, maintenance therapy options produced significant overall cost savings. The two-year social costs associated with opioid dependence are estimated to be over $200,000, 4-5 times greater than the cost of health care services for any maintenance strategy. All versions of opioid dependence treatment therefore reduced social costs substantially compared to no treatment, but methadone stands out with 10-35% reductions in social costs over all alternative approaches due to its higher retention rates. Overall, therefore, methadone maintenance therapy is projected to produce the lowest average total (health care plus social) costs ($131,000) over a two-year period, a sum approximately $100,000 less, per patient, than would have been expected without treatment. Total two-year health care plus social costs were similar among the maintenance and tapering strategies, but were higher for Vivitrol and oral naltrexone alone because they were the least effective. It should be noted again, however, that the total cost figures for all treatment strategies are estimated to be substantially lower than the total costs estimated for an individual with opioid dependence that is not started on any form of treatment.
Table ES3. Two-year outcomes and costs among 1,000 hypothetical patients treated for opioid dependence.

<table>
<thead>
<tr>
<th>Outcome/Cost</th>
<th>MMT</th>
<th>BMT</th>
<th>SUB/VIV Taper</th>
<th>SUB/Oral NTX Taper</th>
<th>Vivitrol Alone</th>
<th>Oral NTX Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment outcome (per 1,000):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In treatment</td>
<td>630</td>
<td>523</td>
<td>550</td>
<td>500</td>
<td>416</td>
<td>277</td>
</tr>
<tr>
<td>Relapsed</td>
<td>185</td>
<td>292</td>
<td>265</td>
<td>315</td>
<td>400</td>
<td>538</td>
</tr>
<tr>
<td>Drug –free</td>
<td>177</td>
<td>176</td>
<td>177</td>
<td>176</td>
<td>173</td>
<td>169</td>
</tr>
<tr>
<td>Died</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Cost ($, per patient):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug therapy</td>
<td>699</td>
<td>3,655</td>
<td>8,553</td>
<td>1,249</td>
<td>6,585</td>
<td>665</td>
</tr>
<tr>
<td>Other SA services</td>
<td>14,017</td>
<td>7,043</td>
<td>4,146</td>
<td>4,297</td>
<td>2,985</td>
<td>2,446</td>
</tr>
<tr>
<td>Other health care</td>
<td>23,926</td>
<td>25,993</td>
<td>25,454</td>
<td>26,441</td>
<td>28,109</td>
<td>30,844</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>38,642</td>
<td>36,691</td>
<td>38,153</td>
<td>31,988</td>
<td>37,679</td>
<td>33,954</td>
</tr>
<tr>
<td>Social costs</td>
<td>92,068</td>
<td>102,337</td>
<td>98,033</td>
<td>105,917</td>
<td>119,239</td>
<td>141,076</td>
</tr>
<tr>
<td>TOTAL</td>
<td>130,710</td>
<td>139,028</td>
<td>136,187</td>
<td>137,905</td>
<td>156,918</td>
<td>175,030</td>
</tr>
</tbody>
</table>

MMT: methadone maintenance treatment; BMT: buprenorphine maintenance treatment; NTX: naltrexone; SUB: Suboxone; VIV: Vivitrol

New England Clinical and Budget Impact Analysis

The clinical outcome and budget impact analysis was also conducted over a two-year period. The focus of attention was on individuals with opioid dependence who are either receiving treatment or who need but are not receiving treatment in New England; population-based estimates for each state were derived from data collected in the 2009-2012 rounds of the National Survey of Drug Use and Health (NSDUH) (SAMHSA, 2013c). The analysis focused attention on the potential clinical outcomes (i.e., substance abuse-related deaths averted) and budgetary impact of moving different proportions of currently untreated individuals into maintenance treatment with Suboxone. Suboxone was assumed to be the modality of interest for expanded access to maintenance therapy given the regulatory hurdles required to expand access to methadone.

Currently, it is estimated that, of the 133,000 New Englanders with opioid dependence, 40,000 receive maintenance treatment. Moving 10% of untreated patients into treatment would increase the size of the population retained in treatment by 12%, to 45,000. Moving 50% into treatment would increase the treated population by over 60%, to 64,000. At baseline, approximately 2,800 opioid-related deaths would be expected to occur across New England in a two-year period, 450 of which would be among...
adolescents. Expanding treatment access by 10% would reduce the number of deaths by nearly 150 (30 of whom would be adolescents). A 50% expansion of patients brought into treatment would be expected to save nearly 700 lives in two years, including over 100 adolescents.

As noted earlier, even when considering health care costs alone, the additional costs associated with expanding access to maintenance treatment have been found to be fully offset by savings in the cost of other health care services. Current health care costs for all individuals with opioid dependence are estimated to total approximately $5.2 billion for the region ($1.5 and $3.7 billion for treated and untreated individuals, respectively). Moving 5% of untreated individuals into treatment would increase treatment expenditures by $73 million, but result in reductions in the cost of other health care services by about $80 million. Greater levels of expansion would result in greater net cost savings. For example, a 10% expansion would increase treatment costs by $183 million, but reductions in the cost of other health care services of nearly $200 million would result in net cost savings of $15 million.

The effects of expanded access to maintenance treatment on total (health care plus social) costs are more dramatic, as presented in Figure ES2 on the following page. At baseline, total costs of opioid dependence in the region are estimated to be approximately $29 billion over two years, 81% of which is generated by dependent individuals not currently in treatment. At each level of treatment expansion, net savings are substantial, given that costs of health care services are already offset by treatment and reductions in social costs are pronounced. For example, expanding treatment by as little as 5% would decrease total costs for the entire population of individuals with opioid dependence by approximately $220 million. A 25% expansion would decrease overall population costs by approximately $1.3 billion, and a 50% expansion would decrease overall costs by $2.6 billion. Put another way, each additional health care dollar spent on expanding maintenance treatment would return approximately $1.80 in savings. Importantly, all of these savings are realized even under the assumption that only slightly more than 50% of individuals newly-accessing Suboxone treatment would remain in treatment after two years.
Figure ES2. Total costs (health care plus social costs of opioid dependence) among treated and untreated persons with opioid dependence in New England, assuming different levels of increase in percentage of individuals brought into treatment.

Real World Perspectives on Barriers, Innovations, & Opportunities in New England

The full draft report includes a summary of unstructured interviews with 15 regional and national policy experts to understand real-world perspectives on practice and delivery system innovations, barriers to change, and opportunities for improving how patients utilize and access opioid dependence treatment in New England. Interviewees came from each New England state and represented OTPs, advocacy organizations, state agencies, clinical societies, academic institutions, and outpatient addiction treatment centers. Key recommendations supported by a large majority of policy experts are summarized on the following page. At the public CEPAC meeting on June 20th, these recommendations will be discussed at length with CEPAC and a Policy Roundtable of policy experts from across New England. In the final version of the Executive Summary that will be developed following the CEPAC meeting, a formal set of policy perspectives and recommendations will be included to explore these and other mechanisms to improve the care of patients and control costs.
Management of Treatment

1. Patients should be screened for addiction in primary care settings in order to support early interventions for recovery.

2. A comprehensive initial assessment and individualized treatment plan targeted to support a patient’s unique health care needs are essential for patient success.

3. Maintenance therapy is an important component of any treatment plan and the selection of medication for initial treatment should be guided by a full understanding of a patient’s addiction history, tolerance, and psychosocial environment.

4. Strategies for dosing and tapering should engage the patient and adopt an individualized approach.

5. Treatment for opioid dependence requires comprehensive, team-based care with collaboration across health care providers.

Improving Access to Treatment and Quality of Care

1. Innovative solutions are needed to recruit, train, and retain qualified physicians to the field of addiction medicine.

2. Regulations that significantly limit the number of treatment options available for patients should be reconsidered and revised to better address the need for addiction services.

3. Innovative approaches that triage patients to appropriate levels of care are needed to support patient-centered treatment and allow for more capacity in the system.

4. More streamlined processes for prior authorization of Suboxone and Vivitrol are needed to serve patients, pharmacists, and physicians more efficiently.
1. Introduction

To make informed health care decisions, patients, clinicians, and policymakers must consider many different kinds of information. Rigorous evidence on the comparative clinical risks and benefits of alternative care options is always important; but along with this information, decision-makers must incorporate other considerations. Patients and clinicians must weigh patients’ values and individual clinical needs. Payers and other policymakers must consider information about current patterns of utilization, and the impact of any new policy on access, equity, and the overall functioning of systems of care. All decision-makers, at one level or another, must also take into account the costs of care, and make judgments about how to gain the best value for every health care dollar.

The goal of the New England Comparative Effectiveness Public Advisory Council (CEPAC) is to provide a forum in which all these different strands of evidence, information, and public and private values are discussed together, in a public and transparent process. Funded by a consortium of state Medicaid agencies, private payers, and integrated provider groups, and backed by a diverse set of New England state policymakers, the mission of CEPAC is to provide objective, independent guidance on how information on comparative effectiveness can best be used across New England to improve the quality and value of health care services. CEPAC is an independent body composed of clinicians and patient or public members from each New England state with skills in the interpretation and application of medical evidence in health care delivery. Representatives of state public health programs and of regional private payers are included as ex-officio members of CEPAC. The latest information on CEPAC, including conflict of interest policies and guidelines for submitting comments, is available online: cepac.icer-review.org.

The Institute for Clinical and Economic Review (ICER) manages CEPAC and is responsible for developing evidence reviews for CEPAC consideration. ICER is a trusted non-profit organization that evaluates scientific evidence on the value of medical tests, treatments, and delivery system innovations and helps translate that evidence into action to improve patient care and control costs. By working collaboratively with patients, clinicians, manufacturers, insurers and other stakeholders, ICER develops tools to support patient decisions and medical policy that share the goals of empowering patients and improving the value of health care services. More information about ICER is available at www.icer-review.org. ICER has produced this evidence review and policy analysis in response to increasing stakeholder interest in strategies for managing opioid dependence, driven in large part by the growing opioid addiction epidemic in New England and across the country.

This report will support CEPAC’s deliberation and attempts to answer some of the key issues confronting patients, providers, payers, and other policymakers. The goals of this review are to: 1)
document the federal and New England state regulations affecting treatment options; 2) provide an overview of existing clinical guidelines and payer coverage policies; and 3) summarize the evidence on the different management approaches for opioid dependence, including special considerations for adolescents. ICER’s report for CEPAC also includes the results of a survey performed by ICER of treatment centers across New England in order to capture regional practice patterns, delivery system innovations, and policy opportunities to improve outcomes while controlling costs, as well as an overview of lessons learned from regional and national experts in the field of addiction medicine. ICER also developed a simulation model to explore the clinical and economic impact of various management strategies for patients with opioid dependence. The overall purpose of this report is to help enhance the use of evidence in practice and policy, and comments and suggestions to improve the work are welcome.
2. Background

Physical dependence on and/or addiction to prescription narcotics has reached a critical level in the U.S., due to the growing national epidemic of prescription drug abuse. Approximately 12 million Americans reported using prescription painkillers for nonmedical purposes in 2010, the most recent year for which data are available [National Institute on Drug Abuse (NIDA), 2014]. Heroin use is also on the rise. In 2012, the percentage of people using heroin in the past year had more than doubled since 2003 (Substance Abuse and Mental Health Services Organization, 2013). Fatal drug overdoses have more than tripled in the United States since 1999, with pharmaceutical overdoses – particularly from opioid pain medications such as oxycodone, hydrocodone, and methadone – driving the increase [Centers for Disease Control and Prevention (CDC), 2011]. In fact, death from drug overdose is now the leading cause of injury-related death in the United States, outpacing deaths from homicide, suicide, and traffic fatalities (CDC, 2013a). The problem of opioid addiction has recently received significant national and regional attention. Governors in New Hampshire, Massachusetts, Maine, and Vermont have all noted that combating growing opioid abuse is a major priority in their state, and are searching for solutions for managing the growing affected population while addressing concerns regarding access and costs.

Several factors are cited for contributing to the escalating levels of opioid addiction in the U.S., including overprescribing and diversion of opioid painkillers, as well as the low cost, increased potency, and widespread availability of heroin. In 2010, enough prescription painkillers were prescribed in the U.S. to medicate every American adult continuously for one month (CDC, 2013b). Although most of these medications are prescribed for clinically indicated purposes, many are ultimately diverted to friends and family members without a prescription for non-medical use. Given the low cost of heroin relative to opioid painkillers, many individuals transition to using heroin once addicted to opioid medication (NIDA, 2014). The societal impact of opioid dependence is substantial in terms of costs related to treatment, lost work productivity, criminal activity, and social welfare expenditure (Hall, 2006). The total cost of illicit drug use and abuse in the U.S. was estimated to total nearly $200 billion in 2011 (U.S. Department of Justice National Drug Intelligence Center, 2011).

Even with rising levels of opioid abuse and dependence, treatment resources are limited in the U.S. and many individuals requiring treatment are unable to access care. MAT for opioid dependence in clinic-based settings requires highly structured treatment protocols and special licensing by federal and state entities that isolate treatment from the rest of the health care system and serve as a barrier to entry for many patients and physicians (an explanation of federal and state regulations are provided in the next section). Meanwhile, federal and state regulations restrict the number of patients physicians can treat with opioid treatment medication in office-based settings. The highly
restrictive treatment setting for patients with opioid dependence reinforces the stigma many people associate with treatment for substance abuse, and helps perpetuate the misconception that opioid dependence is a willful choice and not a long-term chronic medical disorder.

Pharmacology

The goals of treatment for opioid dependence include decreased use or abstinence from illicit opioid use, reduced nonopioid drug use, decreased mortality, and reductions in criminal activity (Thomas, 2014). Pharmacological treatment options include methadone, buprenorphine, buprenorphine/naloxone (Suboxone®), and naltrexone (Revia®, Vivitrol®). These agents are described below, including their place in therapy as well as a discussion of their associated benefits and risks. A summary table comparing the different medications can be found on page 20.

Methadone

Methadone has been used in the treatment of opioid dependency for almost 50 years (Tetrault, 2012). As a full opioid agonist, methadone binds to cells in the brain and fully activates receptors, helping to control cravings and block the effects of illicit drugs such as heroin (Nosyk, 2013). Available as a branded (e.g., Methadose®) or generic medication, methadone is provided as an oral liquid for the treatment of opioid dependency (FDA, 2014). In the U.S., patients must be enrolled for treatment at a federally-licensed clinic to receive methadone, and must go to the clinic daily for their dose (see Section 3). Advantages of methadone include documented efficacy in easing patients’ cravings and feelings of euphoria. Potential risks and adverse effects of methadone include constipation, sweating, and heart arrhythmias (Nosyk, 2013). Methadone may be used for induction therapy (initial management of withdrawal symptoms to help wean patients from illicit opioid use), or for maintenance treatment. The risk of abuse and overdose are substantial challenges with methadone treatment (Nosyk, 2013), and its use carries significant stigma as being associated with continued drug abuse (Olsen, 2014).

Suboxone®/Zubsolv® (Buprenorphine/Naloxone)

Suboxone contains buprenorphine, a partial opioid agonist/antagonist, and naloxone, an opioid antagonist in a 4:1 ratio (Suboxone® package insert, 2011). Like methadone, buprenorphine activates opioid receptors. However, as a partial agonist, buprenorphine’s activity is diminished compared to methadone. Specifically, there is a “ceiling effect” with buprenorphine that limits its efficacy at high doses, but also limits adverse effects (Tetrault, 2012). Inclusion of naloxone deters diversion and abuse, as oral naloxone has poor absorption into the body but will cause withdrawal symptoms when injected intravenously. Suboxone is available as a branded film, taken sublingually,
and as a generic or branded sublingual tablet (Zubsolv). Patients take a single dose each day, and may receive a prescription for up to 30 days of medication. Unlike methadone, buprenorphine/naloxone may be used by office-based physicians who have obtained a special prescribing license (see Section 3) as well as in licensed treatment centers. Benefits of buprenorphine/naloxone include easing of patients’ cravings with a decreased risk of overdose and diversion. Potential side effects include headache, sweating, and potential liver complications (Volkow, 2014); in addition, concurrent use of benzodiazepines may lead to significant respiratory depression and overdose (Tetrault, 2012). Naloxone should also be avoided in pregnancy (Tetrault, 2012). Suboxone may be used for therapy induction or stabilization as well as maintenance treatment. As with methadone use, Suboxone is viewed by some as a capitulation to drug addiction and not as a treatment for a chronic disease (Olsen, 2014). Further, while many prescribers adhere to federal prescribing regulations and treatment recommendations, other clinicians utilize Suboxone prescribing as a sophisticated cash-generating business opportunity (Sontag, 2013).

Buprenorphine Alone

Buprenorphine may also be used alone in the treatment of opioid dependence. Without the presence of naloxone, there is an increased risk of diversion with buprenorphine, but it may be an appropriate choice for the treatment of pregnant women (who should not receive naloxone). It is available as a generic sublingual tablet and is dosed once daily. Buprenorphine may also be used as an agent for therapy induction or stabilization as well as for maintenance treatment.

Revia®/Vivitrol® (Naltrexone)

Naltrexone is a complete opioid antagonist, producing blockade at receptors in the brain and preventing the euphoria that is a consequence of drugs like heroin and oxycodone (Tetrault, 2012). Available as a branded (Revia) and generic oral tablet, naltrexone was also approved in 2010 as an intramuscular depot injection (Vivitrol). Oral tablets require once-daily dosing, while the depot injection is given in a clinician's office once a month. Advantages of naltrexone include the absence of addicting or sedating effects as well as little to no potential for abuse or diversion (Volkow, 2014). The primary disadvantage is that naltrexone has relatively little effect on opioid cravings, which may precipitate addiction relapse in many patients (Dijkstra, 2007). Patients must also be opioid-free for approximately seven days before starting therapy with naltrexone. Serious adverse events include precipitation of opioid withdrawal symptoms and liver injury (Vivitrol® package insert, 2010). Other side effects include headache, stomach pain, nausea and fatigue (Tetrault, 2012). Naltrexone is used as a maintenance agent in patients who have undergone opioid detoxification and are not receiving opioid replacement therapy with methadone or Suboxone. Challenges to the use of naltrexone include poor adherence associated with absence of any
euphoric effects, risks of overdose in patients concurrently using illicit opioids, and the need for patient abstinence prior to therapy initiation (Tetrault, 2012).

Investigational Agents

Investigational treatment options for opioid dependency include a buprenorphine implant (Probuphine®, Titan Pharmaceuticals), a naltrexone implant, and a heroin vaccine. Designed to slowly release buprenorphine over a 6-month period, Probuphine did not receive approval from the FDA in May 2013 despite a favorable vote from its Advisory Committee, as the FDA required further research regarding Probuphine’s ability to mirror relevant doses of sublingual buprenorphine (Carroll, 2013). Initial studies of naltrexone implants that release medication over a 3-6 month period have demonstrated favorable preliminary safety profiles, but rigorous comparative clinical trials are still needed to investigate treatment outcomes (Lobmaier, 2011). Finally, animal studies of an investigational heroin vaccine involving antibodies to heroin and its metabolites have provided preliminary evidence of activity against the rewarding and reinforcing properties of heroin (Schlosburg, 2013).
Table 1. Summary characteristics of medications for the treatment of opioid dependency.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Methadone</th>
<th>Buprenorphine/naloxone</th>
<th>Naltrexone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand name</td>
<td>Methadose</td>
<td>Suboxone, Zubsolv</td>
<td>Revia, Vivitrol</td>
</tr>
<tr>
<td>Class</td>
<td>Full agonist</td>
<td>Partial agonist/antagonist</td>
<td>Full antagonist</td>
</tr>
<tr>
<td>Administration</td>
<td>Oral liquid</td>
<td>Sublingual film/tablet</td>
<td>Oral tablet/depot injection</td>
</tr>
<tr>
<td>Use and effects</td>
<td>Taken once daily to alleviate cravings and withdrawal symptoms</td>
<td>Taken once daily to alleviate cravings and withdrawal symptoms</td>
<td>Taken once daily or by monthly injection to decrease rewarding effects of opioids</td>
</tr>
<tr>
<td>Usual effective dose</td>
<td>20 -100 mg/day</td>
<td>8-24 mg/day (Suboxone)</td>
<td>50-100 mg/day (Revia)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.7 – 11.4 mg/day (Zubsolv)</td>
<td>380 mg/month (Vivitrol)</td>
</tr>
<tr>
<td>Prescription source</td>
<td>Federally regulated drug treatment clinics</td>
<td>Federally regulated drug treatment clinics; licensed physicians’ offices</td>
<td>Federally regulated drug treatment clinics; physicians’ offices</td>
</tr>
<tr>
<td>How dispensed</td>
<td>On site at federally regulated drug treatment clinics; take-home doses permitted for patients with documented compliance and negative drug urine screens</td>
<td>Community pharmacies; on site at federally regulated drug treatment clinics</td>
<td>Physicians’ offices; on site at federally regulated treatment clinics</td>
</tr>
<tr>
<td>Advantages</td>
<td>High strength and efficacy</td>
<td>Eligible for prescription doses up to 1 month; avoidance of specialty clinics; decreased abuse liability</td>
<td>Not addictive or sedating, and without physical dependence; avoidance of daily dosing</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>High abuse and diversion potential; requires daily visits to approved treatment clinics</td>
<td>Some abuse potential; risk of precipitated withdrawal with injection</td>
<td>Poor patient adherence; treatment requires initial abstinence</td>
</tr>
<tr>
<td>Price for 30 days of treatment (based on average wholesale price estimates)</td>
<td>Generic liquid: $15</td>
<td>Generic tablet: $600*</td>
<td>Generic tablet: $200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suboxone: $500</td>
<td>Revia: $660</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zubsolv: $500</td>
<td>Vivitrol: $1,400</td>
</tr>
</tbody>
</table>

* According to Red Book Online®, the average wholesale price for generic buprenorphine/naltrexone does not appear to be less than the current pricing for Suboxone.

3. Regulations, Restrictions, and Access to Care in New England

An overview of regulations and legislative initiatives affecting treatment for opioid dependence are presented in the sections that follow. Regulations related to the prescribing of opioid medications or overdose prevention, while related to opioid dependence, are not included here in detail since they are outside the scope for this review. It is important to recognize that legislative status is an ever-changing landscape; accordingly, this section should be considered a “snapshot” of status at the time of report publication.

3.1 Federal Regulations

Opioid Treatment Programs (OTPs)

Federal law restricts the dispensing of methadone to federal- and state-approved opioid maintenance programs. OTPs, or “methadone clinics”, are licensed and accredited opioid agonist treatment programs that dispense methadone according to highly structured protocols as determined by the federal and state government, including the Department of Health and Human Services (HHS) and the DEA, and individual states (ASAM, 2004). The Substance Abuse and Mental Health Services Administration (SAMHSA) oversees the certification and accreditation of OTPs with assistance from the Center for Substance Abuse Treatment (CSAT). Federal regulation passed in 2001 outlines the conditions required for authorization, including criteria for clinical environment, safety, quality control, and community involvement. Federal regulation also sets forth conditions for patient admission, program staffing, medication dosing, patient assessment, drug testing, and provision of social supportive services.

By regulation, patients receive methadone at OTPs under observation, though many patients may progress to less structured services and may eventually earn take-home medication privileges after documenting responsibility and stability to receive opioid medication unsupervised. The provision of psychosocial services is required at the main treatment facility or through formal referrals with other providers, the frequency, intensity, and scope of which vary according to each individual patient’s needs. Most OTPs only administer methadone, though following the introduction of buprenorphine some programs have expanded their services to include buprenorphine-containing products. To be admitted for treatment, adults must have a documented one-year history of opioid addiction and provide written consent (though certain exceptions apply). For adolescents the
admission criteria are stricter, requiring at least two documented unsuccessful attempts with short-term detoxification or a drug-free treatment within a year before MAT can be provided. Table 1 in Appendix B summarizes other key components of federal regulation for OTPs.

Prescribing of buprenorphine-containing medications

The passing of the Drug Addiction Treatment Act (DATA) of 2000 allowed physicians to dispense or prescribe MAT for opioid dependence in treatment settings other than the traditional OTP environment for the first time. DATA 2000 allows qualified physicians to obtain a waiver (or “X” license) to prescribe and/or dispense Schedule III, IV, and V opioid medications or combinations of such medications that the FDA has specifically approved for the treatment of opioid dependency. Buprenorphine alone and Suboxone/Zubsolv (buprenorphine/naloxone) are currently the only approved treatments by the FDA within these classifications. In order to qualify for a waiver, physicians must hold a current state medical license, a valid Drug Enforcement Agency (DEA) registration number, and have adequate training with respect to the treatment and management of opioid-addicted patients. To meet this end, physicians must either be board certified in addiction medicine or other relevant specialty, have served as the principal investigator in a clinical trial for buprenorphine-containing medications for the treatment of opioid dependence, or have completed an eight hour training course on appropriate use of buprenorphine from an approved organization. Physicians with a waiver may not treat more than 30 patients with an addiction treatment concurrently, but after one year can apply for a second waiver to treat up to 100 patients at one time. Physicians must also attest that they have the capacity to refer patients to counseling and other appropriate non-pharmacological therapies as needed. The DEA maintains oversight of certified physicians and may perform random unannounced audits of physician records to ensure compliance with regulations.

Substance abuse services and the Affordable Care Act (ACA)

The signing of the ACA in 2010 established new requirements for health insurers to cover treatment for addiction and substance use disorders. The final bill includes services for mental health and substance use disorders as an Essential Health Benefit, meaning that health insurance sold on the Health Insurance Exchanges or provided by Medicaid to certain newly eligible adults must include coverage for substance use disorders (Office of National Drug Control Policy, 2014). The law also requires that Medicaid insurance plans and health plans on the marketplace exchange comply with standards for mental health parity and provide services for substance use disorders and mental health to the same level as all other covered medical benefits.
3.2 New England State Regulations

Licensing requirements for substance use disorder treatment programs

Each New England state has strict criteria pertaining to the licensing and accreditation of facilities providing services for substance use disorders. Legislation in each state outlines procedures for renewal, inspections, and other approval processes, as well as conditions for safety, conflict management, patient protection, recordkeeping, and other program components. To operate in a state, OTPs and other substance abuse treatment centers must be certified and registered with all relevant state and federal authorities. The extensive set of criteria pertaining to substance abuse centers make establishing new treatment facilities an arduous task. Some states, like Maine, require that licensing authorities first determine the need for an OTP at a particular location and hold a public forum before establishing a program in a given area.

Each New England state requires that substance abuse facilities have standardized policies and procedures in place for ongoing quality control. All facilities must have documented protocols for program evaluation; patient admission, discharge, and referral; treatment documentation and reporting; and medication administration. Patient admission protocols at OTPs or detoxification facilities typically follow stricter criteria than other substance abuse facilities. For example, OTPs in each state must confirm with the state that a patient is not receiving treatment at any other OTP before providing care. In Maine, OTPs may not admit more than 500 patients without a special waiver. In Rhode Island, adolescents under 16 may not be admitted for treatment without written approval from the state methadone authority, and daily reports on patient admissions, discharges, and transfers must be provided to all relevant state authorities.

Similar to federal regulations, substance abuse facilities in each state require that adequately licensed and trained practitioners supervise program staff. Programs providing MAT, rehabilitation, or detoxification services in each state are required to staff a multi-disciplinary care team typically composed of a medical director, registered nurse, psychiatrist or psychologist, pharmacist, counselors, and case managers. Some states have specific requirements for clinician caseloads. For example, in Maine, counselors working at detoxification facilities or OTPs are unable to treat more than 50 patients at one time, and Rhode Island requires at least one licensed nurse per 25 patients. Most states also have standards that practitioners at substance abuse facilities receive ongoing training in addiction disorders and overdose prevention.

State licensing authorities in New England typically require that patients receive a comprehensive assessment and evaluation that informs an individualized treatment plan. Some states set standards for the frequency and interval at which practitioners must review and update treatment plans to ensure that services continuously adapt to a patient’s specific needs. Complementary
social support, mental health, education, and case management services are typically required as part of the standard treatment program at all substance abuse facilities.

State treatment requirements for programs providing MAT or detoxification services generally follow federal regulations. Some states have more specific criteria for counseling and supportive care than federal standards. For example, Maine sets minimum counseling requirements for different phases of care (e.g. 4 hours of individual counseling during first 45 days of treatment). In Rhode Island, individuals receiving care at OTPs must attend at least one hour of individual counseling monthly in the first year of treatment. The requirement is higher for patients receiving long-term detoxification services.

Many states have also enacted stricter medication requirements, particularly around random drug testing and dosing for take-home use. Federal regulations allow eligible patients to receive up to a monthly dose of methadone for take-home use after two years of continuous treatment. Rhode Island, however, requires patients to achieve four years of ongoing treatment before a monthly take-home dose can be administered. The maximum take-home dose in Massachusetts is 13 days given every two weeks following 18 months of treatment. In Maine, eligible patients may receive a take-home dose of 6 days following one year of continuous services. Maine and Massachusetts also require more frequent drug testing for patients receiving care at OTPs. Compared to federal standards of eight random drug screens a year, Maine and Massachusetts require 12 and 15, respectively.

Table 2 in Appendix B provides a more detailed overview of the various licensing criteria in the region, including staffing, treatment, and program conditions required for substance abuse facilities to operate in each New England state.

Legislative Initiatives

Table 2 on the following page provides an overview of recent legislative activity in New England states related to opioid dependence.
Table 2. Summary of New England state regulation affecting treatment of opioid dependence

<table>
<thead>
<tr>
<th>State</th>
<th>Overdose prevention</th>
<th>Safe prescribing of opioid painkillers</th>
<th>Mandatory insurance coverage for MAT</th>
<th>Treatment duration limits for MAT</th>
<th>Increased regulation for Suboxone® prescribers</th>
<th>Jail Diversion programs</th>
<th>Care delivery reform</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>□</td>
<td>□</td>
<td></td>
<td>□</td>
<td></td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>□</td>
<td>□</td>
<td></td>
<td>□</td>
<td></td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>□</td>
<td>□</td>
<td></td>
<td>□</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>NH</td>
<td>□</td>
<td>□</td>
<td></td>
<td>□</td>
<td></td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>□</td>
<td>□</td>
<td></td>
<td>□</td>
<td></td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td>□</td>
<td>□</td>
<td></td>
<td>□</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Key: □ = Introduced □ = Passed

Most legislation in New England regarding opioid dependence targets opioid prescribing and overdose prevention. States have made efforts in recent years to improve the quality of opioid prescribing for pain management in order to reduce the number of individuals addicted to opioids. States have also made efforts to reduce overdose by expanding access to naloxone, by broadening prescription and administration criteria, and providing legal immunity to persons who seek medical assistance for a drug overdose. In terms of regulation surrounding MAT and treatment for opioid dependence, some states have introduced policies regulating coverage for opioid treatment medication. For example, Maine enacted legislation in 2013 that placed treatment duration restrictions on insurance coverage for MAT. Medicaid patients receiving methadone or Suboxone for opioid dependence in Maine receive coverage for treatment for a maximum of two years, except when permitted for a longer treatment duration through prior authorization. In Rhode Island, legislators recently proposed a bill that would mandate insurance coverage for methadone, Suboxone, other forms of buprenorphine, and naltrexone. The Senate Health and Human Services committee considered the bill in April 2014 and recommended further study.

Access to MAT in criminal justice settings is rare in the U.S., but some states have made efforts to improve access to MAT and the level of care provided in prisons for individuals with opioid dependence. For example, Connecticut passed legislation establishing a jail diversion program that allows for individuals in the court system to be evaluated for addiction and appropriately referred to an addiction treatment program (Connecticut General Assembly, 2014). Massachusetts lawmakers have introduced legislation that would expand addiction treatment for nonviolent drug-dependent offenders by diverting these individuals from jail into treatment (The Commonwealth of Massachusetts, 2014). In Vermont, state legislators introduced a bill that would require courts to provide pretrial screening to defendants who may benefit from substance abuse treatment. The bill also proposes the creation of new programs to help divert individuals with nonviolent crimes away
from traditional criminal justice protocols to reduce the numbers of individuals with addiction in penal institutions (Vermont State Legislature, 2014).

Some New England states have also considered legislation on the regulation of buprenorphine and Suboxone prescribing. Massachusetts lawmakers recently introduced legislation that would expand the power of the Department of Public Health to oversee buprenorphine-containing medications, including the ability to establish further conditions for approval, licensure, staffing, reporting, treatment requirements, and termination of its use. Vermont recently introduced a bill that would require physicians treating with buprenorphine or Suboxone to ensure patients receive adequate substance abuse counseling. The legislation would also allow Vermont’s Medicaid agency to sanction Medicaid-participating providers who are found to have prescribed buprenorphine-containing medications in violation of state or federal requirements.

Other states have supported legislation that introduces new requirements for the delivery of opioid dependence treatment. Rhode Island recently introduced legislation that would require health care facilities providing treatment for addiction to schedule a follow-up appointment within seven days of discharge and make patient contact within 30 days of discharge to assess the patient’s progress. Lawmakers in Vermont approved the implementation of a new model for care delivery called the “Hub and Spoke” program that creates an integrated care continuum for patients with opioid addiction. The Hub and Spoke model links OTPs and office-based opioid treatment programs together under one system of care and triages patients to appropriate levels of treatment based on each individual’s needs (the Hub and Spoke model is described in more detail in Section 8).

Access to treatment

Current provider capacity in New England is not sufficient to meet patient need for treatment for opioid dependence. For example, data from SAMHSA’s National Survey on Drug Use and Health (NSDUH) from 2009-2012 indicates that 133,000 New Englanders are abusing or dependent on opioids, of whom 70% meet criteria for treatment but are not currently receiving it (SAMHSA, 2013c). The percentage of individuals not receiving treatment includes those who think there is no problem and make no effort to seek treatment, those who acknowledge their addiction but refuse treatment, and those waiting for treatment. The NSDUH survey indicates that approximately 2,000 individuals in New England were wait-listed for treatment in 2012; interviews with regional experts and policymakers suggest that this is a conservative estimate.

The current availability of both facility-based and office-based opioid dependence treatment falls far short of clinical need. State-based information from SAMHSA’s National Survey of Substance Abuse Treatment Services (N-SSATS) shows that, in 2012, approximately 46,000 individuals in New England received at least one day of treatment with methadone or buprenorphine-containing medications in an OTP (SAMHSA, 2013b).
While information on the use of Suboxone outside of licensed facilities in New England is not publicly available, some indication of capacity for managing patients in an office-based setting is available from SAMHSA. A total of 1,193 physicians in New England who can prescribe Suboxone have voluntarily reported their status on SAMHSA’s treatment program locator (SAMHSA, 2014). Most of these physicians are limited to a cap of 30 patients, but using a national benchmark, it is estimated that approximately one-third of physicians licensed to prescribe Suboxone have obtained a waiver to move from a patient cap of 30 to 100 (SAMHSA, 2013a). If this figure is applied to New England, the maximum number of patients who could be treated with Suboxone given current provider capacity is approximately 60,000. This number falls far short of the estimated 133,000 individuals in New England who have opioid dependence. And while it is theoretically possible that all 133,000 individuals could be treated by increasing the number of physicians with a cap of 100 patients, this is not a realistic outcome given that many physicians are not able to manage the care of a high number of opioid dependence patients (Gordon, 2011; Walley, 2008).

Restrictions on the availability of MAT in the U.S. criminal justice system also pose a significant barrier to treatment for many individuals with opioid dependence. In 2004, 13% of all inmates in state prisons reported using heroin or opiates regularly (Mumola, 2006). Even though the criminal justice system is regarded as the largest source of referral for substance abuse treatment, only 10% of individuals that require MAT receive it as part of their justice system supervision (SAMHSA, 2013a).

Finally, geographic barriers to access are also an important consideration across New England. For example, Figure 1 on the following page provides a map of available treatment facilities (in red) and office-based Suboxone programs (in blue) in the state of Vermont. As can be seen in the figure, patients in certain locations (e.g., Bennington and Franklin counties) have few or no treatment options available to them, and must therefore travel great distances for either prescriptions or daily facility-based treatment. Similar maps are available for the other New England states in Appendix C.
3.3 Policy Expert Survey on Status of Treatment in New England

To help understand the status of treatment for opioid dependence in New England, ICER developed a survey instrument to profile the types of services provided to opioid dependent patients at treatment locations in the region. The survey was distributed to each facility listed in the SAMHSA OTP directory in New England, as well as to regional physicians and treatment centers included on SAMHSA’s treatment program locator. The survey was also sent to the leadership of each New England state chapter of the American Society of Addiction Medicine (ASAM) for broader distribution. Of the 388 treatment centers surveyed, a total of 32 unique respondents completed the instrument, of which 18 came from Massachusetts, 2 from Connecticut, 3 from Maine, 3 from New Hampshire, 4 from Rhode Island, and 2 from Vermont. Survey respondents represented federally certified OTPs, independent outpatient Suboxone and buprenorphine prescribers, detoxification centers, residential treatment providers, and outpatient counseling programs. The key survey findings are summarized in the following sections.
Description of Responding Treatment Centers

Services Provided

Of the 32 unique treatment programs that responded to the survey nearly all provided some form of MAT. Treatment programs that did not offer MAT offered short-term detoxification, long-term abstinence-oriented recovery support, outpatient counseling and supportive services, or residential sober-living. When offering maintenance therapy, treatment programs typically provided buprenorphine/naloxone tablets and/or Suboxone. Half of the treatment programs that responded to the survey offered methadone, and half offered naltrexone. Approximately 40% of treatment programs surveyed offered both methadone and buprenorphine or buprenorphine combination therapies.

Supportive Services

All treatment centers that responded offered some form of supportive services in addition to maintenance therapy, detoxification, and long-term drug-free rehabilitation. A summary of the supportive services typically provided are described in Figure 2 below.

Figure 2. Survey results of supportive services provided at treatment centers in New England (n=32)

Medication requirements, protocols, and treatment choice

Of the respondents offering maintenance therapy, approximately 30% of treatment centers from across all six New England states had protocols in place that established limits on dosing and/or
treatment duration. Substance abuse programs commonly limited buprenorphine or Suboxone dosing to 16 mg a day. Other practices had higher dosing limits of 24 mg or 32 mg daily. Programs in Maine had protocols for tapering and transitioning patients off treatment by 24 months, in accordance with state regulations.

Only 29% of survey respondents offering MAT had written protocols in place to support physicians in determining which treatment agent to use for drug-assisted treatment. Some practices utilize a standard set of screening criteria to assess appropriateness of buprenorphine-containing medications, methadone, or naltrexone. When patients have documented prior success with a certain medication, efforts are typically made to continue patients with that treatment option. Some practices initiate patients with mild-to-moderate levels of dependency on buprenorphine or Suboxone, and reserve methadone for individuals with higher opioid tolerance who may benefit from a more highly structured treatment regimen. However, many practices cited access questions as driving medication selection. Many patients will lack the ability -- for geographic, financial, or other reasons -- to gain rapid access to treatment with either methadone or buprenorphine/Suboxone. The treatment choice selected is usually the option that the patient can best afford and access.

Barriers to providing high quality treatment to patients with opioid dependence

Respondents cited many challenges to providing high quality health care to patients with opioid dependence. When asked to rank the extent to which different factors served as a barrier to providing treatment, respondents listed insurance coverage, efficiency of referral pathways (e.g. emergency room, court system, etc.), and regulatory structure and restrictions for practice (e.g. physician education, patient management caps for buprenorphine-containing medications, regulation of methadone clinics, etc.) as the most significant obstacles. Prominent challenges to providing treatment are listed in rank order in Table 3 on the following page.
Table 3. Barriers to providing treatment for opioid dependence in New England

<table>
<thead>
<tr>
<th>Obstacle/Treatment challenge</th>
<th>Significant or very significant barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insurance coverage for opioid treatment</td>
<td>57%</td>
</tr>
<tr>
<td>Efficiency of referral pathways for treatment</td>
<td>47%</td>
</tr>
<tr>
<td>Regulatory structure and restrictions</td>
<td>46%</td>
</tr>
<tr>
<td>Community reaction to placement of treatment centers</td>
<td>37%</td>
</tr>
<tr>
<td>Communication/coordination across different health providers</td>
<td>34%</td>
</tr>
<tr>
<td>Recruiting/retaining qualified staff</td>
<td>33%</td>
</tr>
<tr>
<td>Staff or resource levels to address co-morbid conditions</td>
<td>30%</td>
</tr>
<tr>
<td>Availability of time and resources to assess treatment outcomes</td>
<td>27%</td>
</tr>
<tr>
<td>Patient/family attitudes regarding need for treatment</td>
<td>23%</td>
</tr>
<tr>
<td>Tailoring treatment program to client needs</td>
<td>13%</td>
</tr>
</tbody>
</table>

Other challenges referenced by respondents included the inability to secure safe and stable housing environments for patients, insufficient transportation services, and poor coordination of services between mental health and other health care providers. One respondent mentioned that some practices are unwilling to coordinate services and have dropped patients after learning they also receive care at an OTP. Others referenced the scarcity of mental health providers in the region with whom to coordinate care and establish systems for referral.

As shown in the table above, over half of treatment centers surveyed cited insurance coverage and reimbursement as a significant or very significant barrier to care. In some states, programs mentioned that low Medicaid reimbursement rates, legislative actions to reduce funding for treatment centers, and lack of Medicare and private insurance coverage made it a challenge to remain open and continue to provide care. Others stated that underfunding of services made it difficult to maintain adequate staffing and recruit physicians to addiction medicine. Respondents also highlighted that the burdensome nature of existing prior authorization requirements for buprenorphine, Suboxone, and Vivitrol make it difficult to prescribe these therapies.

We examined publicly available policies for national payers, including Aetna, Anthem, Cigna, and UnitedHealthcare, and regional private and public payers.

Limited information is available regarding Medicare coverage of opioid dependency treatment. National Coverage Determinations describe longstanding policies regarding physician-provided, hospital outpatient, and freestanding clinic services for drug abuse treatment. Coverage is subject to general limitations applicable to these settings of care.

http://www.cms.gov/medicare-coverage-database/details/ncd-details.aspx?NCDId=29&ncdver=1&DocID=130.5&bc=gAAAAAgAAAAAAA%3d%3d&

http://www.cms.gov/medicare-coverage-database/details/ncd-details.aspx?NCDId=59&ncdver=1&DocID=130.7&bc=gAAAAAgAAAAAAA%3d%3d&

4.1 Methadone

We found a single publicly available coverage policy for the use of methadone in opioid dependence treatment. Blue Cross Blue Shield of Massachusetts (BCBSMA) explicitly requires prior authorization for methadone treatment of opiate addiction. Survey results in a report prepared for ASAM revealed that all six New England state Medicaid agencies do provide coverage of methadone treatment (ASAM, 2013), although coverage policies are not available online. Among national private payers, Anthem provides clinical guidelines for the treatment of substance abuse but the policy does not describe individual medication treatment approaches.
4.2 Suboxone®/Zubsolv® (buprenorphine/naloxone)

Medicaid

Use of Suboxone is generally limited in New England Medicaid programs through prior authorization and clinical criteria requirements as well as dosing and quantity limits (see Table 4 on page 36). Maine, Massachusetts and Vermont limit the allowable daily dose of Suboxone or the generic tablet to 16 mg, while Massachusetts places additional restrictions on higher doses based on duration of therapy. Use of non-preferred agents requires documentation of intolerance to preferred medication. Only Connecticut (Suboxone) does not require prior authorization. Use of Suboxone in Maine requires evidence of monthly monitoring (e.g., pill counts or urinalyses) and is restricted to a lifetime treatment limit of 24 months. Prior authorization for use beyond 24 months is contingent on patients’ engagement in recovery services and documented attempt(s) at dose tapering. Vermont requires patients to designate a “pharmacy home” for all prescriptions, and the allowable maximum supply is 14 days for take-home doses. Prior authorization for Suboxone in New Hampshire evaluates whether patients have received a dependency assessment and if patients are enrolled in addiction counseling.

Zubsolv may be used in Connecticut, Maine and Massachusetts only with prior authorization.

Regional Private Payers

Among the major regional private payers, Blue Cross Blue Shield of Vermont (BCBSVT), ConnectiCare and Harvard Pilgrim Health Care (HPHC) place few restrictions on the use of Suboxone, Zubsolv and the generic tablet (see Table 5 on page 37). Conversely, BCBSMA, Blue Cross Blue Shield of Rhode Island (BCBSRI) and Tufts Health Plan require prior authorization for use of these medications with dose and quantity limits applied. Similar to Medicaid restrictions, BCBSMA limits the maximum daily dose of Suboxone and the generic tablet to 16 mg and to 11.4 mg for Zubsolv. Quantity limits based on medication strength vary widely for a 30-day prescription (generally 30 – 90 units for film strips or tablets). Criteria for approved use also include a treatment plan and enrollment in behavioral/psychosocial therapy.

National Private Payers

Aetna, Anthem/UniCare/Wellpoint, and UnitedHealthcare require prior authorization for the use of Suboxone, where documented enrollment in an outpatient treatment program may be necessary. Cigna and Aetna require step therapy for Zubsolv, where patients must initially fail therapy using Suboxone or the generic tablet. While Aetna allows for higher daily dosing limits (24 mg for Suboxone and 17.1 mg for Zubsolv), monthly quantity limits are similar across the national private
payers compared with regional groups. Anthem permits higher doses for initial therapy with lower limits for therapy beyond three months. Cigna places no dosing or quantity limits on the use of Suboxone.

4.3 Buprenorphine alone

Medicaid

Use of buprenorphine alone for opioid dependency treatment requires prior authorization among the New England Medicaid agencies (see Table 4 on page 36). Approved uses may include for patients who are pregnant or breastfeeding, or patients who have demonstrated intolerance to naloxone. Vermont allows a 14-day supply of up to 16 mg/day per prescription, with authorized use up to one year.

Regional Private Payers

BCBSMA, BCBSRI and Tufts require prior authorization for the use of buprenorphine, limiting its use to pregnant women, patients with a proven allergy to naloxone or as induction therapy only (see Table 5 on page 37). The maximum allowable dose is 16-24 mg/day while quantity limits range from 11 tablets/90 days (BCBSRI) to 120 tablets/90 days (Tufts).

National Private Payers

National private payers also limit the use of buprenorphine primarily to induction therapy (3-24 tablets/month). Aetna further restricts buprenorphine to patients concurrently enrolled in outpatient counseling, and UnitedHealthcare allows the use of buprenorphine if a patient is pregnant or breastfeeding while in maintenance treatment.

4.4 Revia®/Vivitol® (naltrexone)

Medicaid

Among New England Medicaid policies, generic naltrexone tablets are the preferred therapeutic choice; use of branded tablets (Revia) requires prior authorization and demonstrated intolerance. Massachusetts and New Hampshire do not place restrictions on the use of Vivitol; Vermont
requires prior authorization, with approved use limited to six months. Maine requires patients to have failed oral naltrexone, comply with psychosocial counseling, and submit a recent random urinalysis. Vermont limits the maximum monthly dose to one injection.

Regional Private Payers

HPHC and Tufts do not place restrictions on the use of naltrexone, Revia, and Vivitrol for opioid dependence. BCBSMA limits coverage to oral formulations, while ConnectiCare provides coverage of generic tablets and use of Vivitrol with prior authorization.

National Private Payers

Aetna, Cigna and UnitedHealthcare do not limit the use of naltrexone, Revia or Vivitrol for opioid dependence. Anthem/UniCare/Wellpoint restricts use of Vivitrol to patients unable to comply with daily oral dosing who are abstinent, currently enrolled in a rehabilitation program, and without liver disease.
Table 4. Coverage policies for medications used in opioid dependence treatment: state Medicaid agencies.

<table>
<thead>
<tr>
<th>State</th>
<th>Brand:</th>
<th>Buprenorphine (tablet)</th>
<th>Brand:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suboxone® (film), Zubsolv® (tablet)</td>
<td></td>
<td>Revia® (tablet), Vivitrol® (injection)</td>
</tr>
<tr>
<td></td>
<td>Generic: buprenorphine/naloxone (tablet)</td>
<td></td>
<td>Generic: Naltrexone (tablet)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>+ (Suboxone only)</td>
<td>○</td>
<td>+ (generic oral only)</td>
</tr>
<tr>
<td></td>
<td>• Use of any other agents requires PA</td>
<td></td>
<td>• Use of any other agents requires PA</td>
</tr>
<tr>
<td>Maine</td>
<td>+ (Suboxone only, max dose = 16 mg)</td>
<td></td>
<td>+ (during pregnancy only)</td>
</tr>
<tr>
<td></td>
<td>• Clinical criteria applied to Suboxone use</td>
<td></td>
<td>• (generic oral only)</td>
</tr>
<tr>
<td></td>
<td>• Lifetime limit of 24 months for use of Suboxone unless PA approved</td>
<td></td>
<td>• Use of any other agents requires PA</td>
</tr>
<tr>
<td></td>
<td>• Use of any other agents requires PA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>+ (generic tablet w/dose ≤16 mg per day)</td>
<td></td>
<td>+ (generic oral, Vivitrol)</td>
</tr>
<tr>
<td></td>
<td>• PA required for generic tablet >32 mg/day, and doses between 16 and 32 mg depending on duration of therapy</td>
<td></td>
<td>• PA required for Revia</td>
</tr>
<tr>
<td></td>
<td>• PA required for Suboxone, Zubsolv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>• PA required for Suboxone</td>
<td></td>
<td>○ (Revia and generic)</td>
</tr>
<tr>
<td></td>
<td>○ (Zubsolv)</td>
<td></td>
<td>+ (Vivitrol)*</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>• PA required</td>
<td></td>
<td>• PA required</td>
</tr>
<tr>
<td>Vermont</td>
<td>+ (Suboxone, max dose = 16 mg/day)</td>
<td></td>
<td>+ (generic oral only)</td>
</tr>
<tr>
<td></td>
<td>• PA required for generic tablet (max dose = 16 mg/day)</td>
<td></td>
<td>• PA required for Revia</td>
</tr>
<tr>
<td></td>
<td>• Clinical criteria applied to Suboxone use</td>
<td></td>
<td>• PA required for Vivitrol (max dose = 1 injection/30 days)</td>
</tr>
<tr>
<td></td>
<td>• Authorized use up to 1 year for Suboxone and buprenorphine/naloxone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Max days’ supply for Suboxone and buprenorphine/naloxone = 14 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>○ (Zubsolv)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+: coverage policy identified; ○: no coverage policy identified; PA: prior authorization
Table 5. Coverage policies for medications used in opioid dependence treatment: regional private payers.

|--|---|--|------------------------|---|-----------------------------|
| Blue Cross Blue Shield of Massachusetts | • PA required for all agents [max dose = 16 mg/day (11.4 mg for Zubsolv)]
 • Quantity limits = 30-90 units per prescription based on medication strength
 o (Zubsolv)
 • PA required (max dose = 16 mg/day)
 + (Revia and generic only)
 o (Vivitrol) |
| Blue Cross Blue Shield of Rhode Island | • PA required for Suboxone, buprenorphine/naloxone
 • Quantity limits = 30-90 units per 30 days based on medication strength
 o (Zubsolv) |
| Blue Cross Blue Shield of Vermont | +
 • Quantity limit = 90 units per prescription |
| ConnectiCare | +
 • Quantity limit for Suboxone = 90 film strips/month |
| Harvard Pilgrim Health Care | + |
| Tufts Health Plan | • PA required for Suboxone, Zubsolv, buprenorphine/naloxone with 12-month limit on coverage
 • PA required (max dose = 24 mg/day) with 12-month limit on coverage
 • Quantity limits = 90-120 units per 30 days based on medication strength
 + |

+: coverage policy identified; o: no coverage policy identified
PA: prior authorization
5. Clinical Guidelines and Policy Statements

5.1 Methadone

American Society of Addiction Medicine (2010)
http://www.asam.org/docs/publicy-policy-statements/1obot-treatment-7-04.pdf?sfvrsn=0

ASAM considers methadone to be a significantly underutilized treatment and recommends expansion of its use to office-based settings. While OTPs provide some of the necessary structure and intensity needed for many patients who are new to treatment, ancillary services such as counseling that clinics typically provide can be offered in other treatment settings. Expanding methadone to office-based settings would give physicians the flexibility to “graduate” patients to less structured environments without having to change the type of medication that is best suited to their needs.

American Association for the Treatment of Opioid Dependence (2011)
http://www.aatod.org/policies/policy-statements/793-2/

AATOD recommends an outcomes-based approach for legislators and physicians to improve access to methadone-assisted treatment for opioid dependence. AATOD suggests that there has historically been a widespread problem of suboptimal methadone dosing in OTPs that leads to continued substance abuse. Efforts are needed to further educate state officials and raise awareness of the value of methadone in the treatment of opioid dependency, particularly for those in the criminal justice system.

Academy of Managed Care Pharmacy (2010)

AMCP recommends methadone for maintenance treatment, followed by a gradual taper, for patients who have had a history of dependence of at least one year. AMCP also warns against the use of co-administering enzyme-inducing medications such as carbamazepine and St. John’s Wort because they could precipitate withdrawal symptoms in methadone-maintained patients.

American Psychiatric Association (2010)

The APA clinical guidelines suggest that methadone is safe and effective for use in MAT for opioid dependence and higher doses of methadone are generally associated with better retention in treatment and lower rates of illicit opioid use. Methadone-related side effects are limited, and many patients that do exhibit such symptoms develop a tolerance to them over time. The APA...
recommends methadone-based maintenance treatment for patients with opioid dependence of ≥1 year.

National Institute on Drug Abuse (2012)
http://www.drugabuse.gov/sites/default/files/podat_1.pdf

NIDA states that methadone maintenance treatment increases patient participation in behavioral therapy and decreases drug use and criminal behavior, which are essential to recovery. NIDA guidelines suggest that patients receive methadone maintenance treatment for one year at a minimum, though treatment duration can potentially be indefinite for patients who require continued maintenance.

Substance Abuse and Mental Health Services Administration

SAMHSA’s clinical guidelines state that methadone has the greatest potential for abuse of all the drugs used in MAT, and clinicians should therefore correlate dosing with the patient’s level of physical dependence on opioids. SAMHSA notes that patients desiring to be abstinent from all opioids, including MAT, have had a higher rate of success (fewer opioid-positive urines) with a longer taper (30 weeks, decreased at 3%/week) than a shorter taper (10 weeks, decreased at 10%/week). The guidelines also state that physicians should avoid involuntary tapering, if possible. SAMHSA states that patients receiving methadone may be good candidates for buprenorphine-containing medications if they can be maintained on a dose of 30mg/day. However, the guidelines recognize that achieving this transition is difficult given that opioid withdrawal symptoms typically emerge at or below 30mg/day.

5.2 Buprenorphine or buprenorphine/naloxone (Suboxone)

American Society of Addiction Medicine (2011)

Buprenorphine efficacy is comparable to methadone, and patients can safely transfer from methadone treatment by gradually reducing their dose to 30-40mg before initiating buprenorphine/naloxone induction. ASAM acknowledges that while maintenance with buprenorphine/naloxone has been shown to improve outcomes for patients under 18, further research is needed to determine its long-term efficacy for this population. ASAM states that though buprenorphine is not recommended for patients with liver function abnormalities, it appears to be subject to fewer drug/drug interactions than methadone.
Academy of Managed Care Pharmacy (2010)

AMCP considers office-based treatment programs a breakthrough model for the management of opioid dependence since buprenorphine and buprenorphine/naloxone have lower risks of overdose and are well tolerated in less-than-daily doses compared to methadone. AMCP suggests, however, that there is a “ceiling effect” for buprenorphine, in which there is no additional benefit by increasing the dose beyond a certain point (16-32mg depending on level of illicit opioid use).

American Psychiatric Association (2010)

The APA clinical guidelines recommend that buprenorphine can be effective on a less-than-daily schedule and as a bridging agent to naltrexone. Physicians should therefore administer higher, less frequent doses accordingly. Buprenorphine may be best suited for patients with less severe physical dependence. Although the overdose rate is generally low compared to methadone, death is more likely if a combination of buprenorphine and a benzodiazepine is used.

National Institute on Drug Abuse (2012)
http://www.drugabuse.gov/sites/default/files/podat_1.pdf
http://www.drugabuse.gov/sites/default/files/tib_mat_opioid.pdf

NIDA states that the availability of buprenorphine in office-based settings increases access to treatment for opioid-dependent individuals. NIDA supports further research on a long-acting (injectable) form of buprenorphine.

Substance Abuse and Mental Health Services Administration

SAMHSA guidelines suggest that sublingual buprenorphine/naloxone seems to have comparable effectiveness to buprenorphine alone, but that buprenorphine/naloxone has less potential for abuse. If physicians use buprenorphine to initiate withdrawal or discontinue opioid-agonist treatment, naltrexone must also be administered to prevent relapse (this method is used primarily for adolescents or patients with shorter histories of abuse). SAMHSA cautions that switching from methadone to buprenorphine is complex and may not be appropriate for all patients. Typical candidates for buprenorphine maintenance include patients with a history of opioid addiction that have tried other treatment methods but are not physically dependent, those who were previously in a controlled environment, and those who have been addicted for less than one year.
5.3 Naltrexone and Vivitrol (injectable naltrexone)

American Association for the Treatment of Opioid Dependence (2013)

AATOD recommends that patients be completely opioid free for 7-10 days before starting Vivitrol treatment to prevent withdrawal. The policy statement cautions that Vivitrol should not be regarded as a type of cure for opioid addiction; rather, conventional modalities, including drug rehabilitation and counseling, should always supplement MAT. Due to Vivitrol’s hypertoxicity, AATOD recommends regular clinical evaluations with serial liver function studies.

Academy of Managed Care Pharmacy (2010)

AMCP recommends naltrexone for the treatment of opioid intoxication once acute symptoms have been resolved. Patients must be monitored closely throughout the withdrawal process, particularly in the first few hours, as there is a high risk of severe withdrawal symptoms and hypotension.

American Psychiatric Association (2010)

The APA clinical guidelines recommend naltrexone as a maintenance agent as it is highly effective in blocking heroin and other short-acting opioids. Retention in treatment is generally poor and has a high risk of relapse. As such, the APA states that though naltrexone is typically underutilized, the treatment option has higher efficacy with motivated patients who are participating in ancillary substance abuse services such as counseling. Voucher incentives in particular appear to improve adherence to naltrexone treatment.

National Institute on Drug Abuse (2012)
http://www.drugabuse.gov/sites/default/files/podat_1.pdf

NIDA considers naltrexone typically to be associated with poor patient compliance, and therefore has limited effectiveness in the treatment of opioid dependency. However, the guidelines suggest that Vivitrol appears to be an effective alternative for those unable to or undecided on whether to use agonist treatment.
Substance Abuse and Mental Health Services Administration

Patients must be fully withdrawn for up to two weeks before beginning naltrexone maintenance treatment. Naltrexone is particularly effective among subgroups with strong psychosocial supports, including health care professionals, business executives, younger patients, and patients involved in the criminal justice system.

5.4 Other Treatment Requirements/Interventions

American Society of Addiction Medicine
http://www.asam.org/docs/publicy-policy-statements/1obot-treatment-7-04.pdf?sfvrsn=0 (2010)

ASAM recommends collaboration between addiction medicine and addiction psychiatry organizations to provide the level of care appropriate to address patients’ individualized clinical and psychological needs.

American Association for the Treatment of Opioid Dependence (2011)
http://www.aatod.org/policies/policy-statements/793-2/

AATOD suggests the use of prescription monitoring programs (PMPs) as a valuable clinical tool for safely and effectively treating patients, as PMP databases give OTP’s access to patient data.

American Psychiatric Association (2010)

The APA clinical guidelines state that psychosocial treatments, such as behavioral therapies and contingency management, all have varying degrees of effectiveness in reducing opioid-abusing behaviors and retaining patients in treatment, particularly for heroin users. Although psychotherapy alone seems to yield exceptionally high attrition rates, it is particularly effective in aiding in cessation of other substances of abuse.

National Institute on Drug Abuse (2012)
http://www.drugabuse.gov/sites/default/files/podat_1.pdf

NIDA’s guidelines suggest that mandatory treatment yields similarly favorable outcomes as voluntarily treatment. NIDA considers it best practice to treat comorbidities simultaneously, and to
provide a continuum of services. Guidelines also state that voucher-based incentives are effective in reducing opioid and cocaine use for methadone-maintained patients.

Substance Abuse and Mental Health Services Administration

SAMHSA’s clinical guidelines suggest individualizing patient treatment to the extent possible with the resources available, screening for co-morbidities and mental disorders, and addressing the distinct needs of patients with different backgrounds. SAMHSA notes that to determine the appropriateness of office-based or other opioid-agonist treatment, a comprehensive patient assessment is crucial. SAMHSA requires psychosocial treatments to be part of any MAT plan in order to determine if a present psychiatric disorder is a primary disorder or substance-induced. The maintenance treatment model is not one-directional; relapses to drug use happen and patients should always be encouraged to remain in treatment.
6. Evidence Review

The goal of the evidence review was to evaluate the comparative effectiveness and value of MAT for the treatment of opioid dependence. The sections that follow are organized around five “framing” questions of primary interest for this review. These include (1) the comparative effectiveness of maintenance versus detoxification treatment approaches; (2) the comparative effectiveness of different pharmacologic treatment options for opioid dependence; (3) the evidence on different protocols for medication dosing and duration; (4) identification of important components of medication-assisted treatment and their correlation with treatment success; and (5) discussion of the available evidence on alternative delivery models for opioid dependence treatment.

Given the very broad scope of this review, we did not conduct a detailed and comprehensive systematic review. Rather, we first identified several prior systematic reviews of relevant RCTs published by the Cochrane Collaboration, as listed below:

- Methadone maintenance versus no opioid replacement therapy (detoxification) (Mattick, 2009)
- Buprenorphine versus methadone maintenance (Mattick, 2014)
- Oral naltrexone abstinence treatment (Minozzi, 2011)
- Maintenance/detoxification treatments for adolescents (Minozzi, 2009a&2009b)
- Psychosocial and pharmacological treatments for opioid dependence (Amato, 2011a&2011b)

To supplement these reviews, we also identified any additional RCTs, comparative cohort studies, or case series relevant to the framing questions that were published between January 2003 (the year following Suboxone approval in the U.S.) and April 2014. Case series were limited to those involving 100 or more patients; no other restrictions were placed on study selection. The focus of attention for the comparative effectiveness questions (i.e., maintenance versus detoxification, methadone versus buprenorphine versus naltrexone) was primarily on comparative studies; we nevertheless abstracted large case series relevant to these questions in order to provide additional context.

We sought published studies and systematic reviews of substance abuse treatment among all patients with dependence on prescription or illicit opioids. We further explored the evidence on adolescents as a subpopulation deemed to be of critical interest by CEPAC. We did not evaluate studies conducted specifically in pregnant women, as not all of the treatment options of interest are available to this subgroup. Interventions of interest included maintenance opioid replacement treatment with methadone or buprenorphine-containing agents (including Suboxone), dose-tapering strategies for methadone or Suboxone resulting in opioid abstinence with or without
naltrexone, use of naltrexone alone without prior stabilization on methadone or buprenorphine, and drug-free detoxification. For the purposes of framing question 1, detoxification was considered to be any program of treatment with opioid abstinence as a goal that was less than 30 days in duration.

Outcomes of primary interest included retention in treatment, use of illicit opioids or other drugs, relapse, and mortality. We also collected information on employment, criminal activity, and health-related quality of life where available. Further details on the literature search strategy for each framing question can be found in Appendix A.

6.1 Maintenance versus Detoxification

A 2009 Cochrane systematic review of clinical trials comparing maintenance to detoxification and other drug-free treatment for opioid dependence found consistently superior outcomes for maintenance approaches. Maintenance was associated with better treatment retention and lower rates of illicit drug use compared to patients who were detoxified as their primary course of therapy. Other studies not included in the Cochrane review have produced similar findings.

Some detoxification case series have shown high completion rates of the short-term detoxification phase. One study (Smyth, 2005) reported an 81% completion rate when methadone tapering was used over a 10-day period, while similar results were reported using Suboxone, with 68% of 234 participants successfully completing a 13-day taper (Amass, 2004). However, in this study even patients who completed detoxification had poor outcomes at follow-up. Relapse to heroin use, either by urinalysis or self-reports, was identified in nearly half of participants. Another detoxification study (Gandhi, 2003) observed that 74% of participants were using heroin 30 days after successful program completion, and <20% were retained in some form of aftercare at six months of follow-up.

In comparing longer-term patient outcomes between detoxification approaches and maintenance therapy, the published literature has clearly favored maintenance therapy. A 2009 Cochrane review found that methadone maintenance therapy was superior to drug-free treatment, including drug-assisted and drug-free detoxification, placebo, and wait-list control (Mattick, 2009). Although there was no statistically significant difference found in mortality between treatment approaches, maintenance therapy was found to retain a higher percentage of patients in treatment over 3-12 months of follow-up (68.1% vs. 25.1%; rate ratio [RR] 3.1; 95% CI 1.8, 5.4; p<.001) and had lower rates of heroin use (45.7% vs. 66.5% positive urine/hair analysis; RR 0.7; 95% CI 0.6, 0.8; p<.001). A forest plot of individual study results is presented in Figure 3 below. Inclusion of studies published

©Institute for Clinical and Economic Review, 2014
both before and after the year 2000 yielded similar findings. It should be noted that, while both outcomes favored maintenance therapy, results were still less than optimal for maintenance approaches (i.e., nearly 50% of patients testing positive for heroin use).

Figure 3. Forest plot of methadone maintenance versus control.

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Methadone MT</th>
<th>Control</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H Random 95% CI</td>
<td></td>
<td>M-H Random 95% CI</td>
</tr>
<tr>
<td>Old studies (pre 2000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newman 1979</td>
<td>38/50</td>
<td>5/50</td>
<td>22.2 %</td>
<td>7.60</td>
<td>3.26, 17.71</td>
</tr>
<tr>
<td>Strain 1993a</td>
<td>44/84</td>
<td>17/81</td>
<td>35.2 %</td>
<td>2.50</td>
<td>1.56, 3.99</td>
</tr>
<tr>
<td>Vanichseni 1991</td>
<td>91/120</td>
<td>41/120</td>
<td>42.6 %</td>
<td>2.22</td>
<td>1.70, 2.90</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>254</td>
<td>251</td>
<td>100.0 %</td>
<td>3.05</td>
<td>1.75, 5.35</td>
</tr>
<tr>
<td>Total events: 173 (Methadone MT, 63 (Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 0.17; Chi^2 = 8.01, df = 2 (P = 0.02); I^2 = 75%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 3.91 (P = 0.000009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These findings are consistent with results from buprenorphine studies identified in our search. For example, a comparative cohort study evaluating buprenorphine for maintenance or detoxification in 60 patients who were in a three-month treatment program found that time in treatment was significantly shorter in the detoxification group (mean: 0.4 weeks vs. 8.5 weeks, p=.001) (Caldiero, 2006).

In addition, although not a direct comparison of “pure” detoxification to maintenance therapy, the effectiveness of shorter versus longer maintenance treatment duration was evaluated in the Prescription Opioid Addiction Treatment Study (POATS) (Weiss, 2011). A total of 653 patients were treated in a two-phase study; in the first phase, patients received stabilization with Suboxone for two weeks followed by a two-week taper. Patients with evidence of illicit opioid use were invited to continue in the study’s second phase, which included three months of maintenance treatment with Suboxone followed by a four-week taper. Of those completing phase 1, the majority (93.4%) had unsuccessful opioid-use outcomes and were therefore included in the maintenance phase, which showed a program success rate of 49.2% at the completion of treatment (Weiss, 2011).
Certain factors have been found to be significantly associated with positive outcomes for patients in MAT, including absence of a family history of substance abuse, older age, and having a spouse or partner engaged in the patient’s rehabilitation (Mattick, 2009). Conversely, factors that are associated with negative treatment outcomes include heroin use (versus prescription opioid use), polydrug use (particularly cocaine and injectable drugs), participation in criminal activity, and a history of psychological problems.

We did not identify any studies comparing detoxification approaches with versus without naltrexone. We identified four case series (Bartu, 2002; Chaudhry, 2012; De Jong, 2007; Dijkstra, 2010) evaluating use of oral naltrexone after detoxification. Although the completion rates of the detoxification phase were comparable to those in case series evaluating detoxification without naltrexone (see above), the addition of oral naltrexone does not appear to substantially improve retention rates, which ranged between 24-30% at 2-10 months of follow-up.

Detoxification versus maintenance therapy for adolescents

The treatment of opioid dependence in adolescents represents a unique challenge to clinicians. While treatment approaches include short-term detoxification and psychosocial interventions, the risk of relapse remains high (Woody, 2008). Two systematic reviews evaluated detoxification and/or maintenance therapy in patients age 18 years or younger (Minozzi, 2009a; Minozzi, 2009b), but found insufficient evidence to distinguish these approaches in the small set of three trials available (n=190). Only one of these studies directly compared maintenance versus detoxification, an RCT (n=152) that compared the short-term, tapered use of Suboxone (14 days) in a detoxification framework to extended maintenance use over 12 weeks of follow-up (Woody, 2008). At 12 weeks, treatment retention was significantly higher in the maintenance cohort (70% versus 21%, p<.001), and patients undergoing detoxification reported significantly more illicit opioid, cocaine, and marijuana use compared to maintenance patients. A separate non-comparative case series of 100 adolescents treated with methadone maintenance found that 50% remained in treatment for more than 12 months with a drop-out rate of 32%, and 39% of patients eventually transitioned to adult clinic services (Smyth, 2012).
6.2 Comparative Effectiveness of Methadone, Buprenorphine, and Naltrexone

Both a recent Cochrane review as well as additional studies of maintenance treatment options consistently found that there are no major differences in mortality or illicit drug use achieved with methadone versus Suboxone or buprenorphine (in any form). However, methadone appears to be associated with greater retention in treatment compared to buprenorphine in either flexible or low, fixed doses. In contrast, naltrexone appears to be no better than placebo at retaining patients in treatment, although limited data suggest that long-acting forms (injectable or implantable) may have advantages over oral naltrexone in this regard.

Methadone versus Suboxone/buprenorphine for maintenance therapy

Findings from a recent Cochrane review comparing methadone- to buprenorphine-based maintenance treatment found no statistically-significant differences in illicit drug use, criminal activity, or mortality between treatment approaches (Mattick, 2014). Long-term follow-up from one of the RCTs included in the Cochrane review suggested that mortality rates remained comparable for methadone and buprenorphine after a mean of 8.3 years of follow-up (Gibson, 2008). Finally, while a recent RCT of 80 patients not included in the Cochrane review found a small but statistically-significant difference between methadone and Suboxone in illicit opioid use (1.5% vs. .2% for Suboxone, p=.03), there were no differences in opioid craving and injecting risk behaviors over five months of follow-up (Otiashvili, 2013).

Methadone maintenance does appear, however, to be associated with higher rates of treatment retention relative to buprenorphine. Findings from the Cochrane review of studies utilizing flexible doses of methadone or buprenorphine showed lower rates of treatment retention for buprenorphine (pooled rate 52.3% vs. 63.0%; rate ratio 0.83; 95% CI: 0.72, 0.95) over 3-12 months of follow-up (Mattick, 2014). Study-specific results are shown in Figure 4 on the following page. Findings were similar when maintenance treatments featuring fixed, low doses of buprenorphine (2-6 mg) and methadone (≤40 mg) were compared.
We identified an additional RCT of 60 patients receiving low-dose buprenorphine or flexible-dose methadone who were followed for up to 24 weeks (Jagsch, 2005). This RCT was not included in the Cochrane review, for unknown reasons (possibly the fixed versus flexible dose comparison). Retention in treatment at the end of the study was twice as high for methadone (71% vs. 38%, p=.01),

Naltrexone versus buprenorphine or methadone

We identified no head-to-head clinical studies of naltrexone versus methadone. We identified a single RCT comparing naltrexone, buprenorphine, or placebo in 126 detoxified patients (Schottenfeld, 2008) who were followed for up to 24 weeks. Buprenorphine was found to be superior to naltrexone in terms of mean days in treatment (117 vs. 84, p=.022), as well as mean days without heroin use (51 vs. 24, p=.028). In contrast, none of the key study measures statistically differed between naltrexone and placebo.
Buprenorphine versus Suboxone

We identified only two studies that assessed the comparative effectiveness of different forms of buprenorphine. One study (Lintzeris, 2013) compared the sublingual tablet and the film forms of Suboxone and found comparable drug plasma levels, clinical outcomes, and adverse-event rates, although the film version generated higher patient satisfaction scores and dissolved more quickly. Another study (Comer, 2010) found that both Suboxone and buprenorphine alone had abuse potential, but patients’ self-reported desire for intravenous drug use and perception of street value was lower with Suboxone.

Long-acting naltrexone versus oral naltrexone versus placebo

A separate Cochrane review assessing six RCTs of maintenance treatment with oral naltrexone versus placebo found that retention and opioid abstinence rates were low with naltrexone (<30%) and not statistically different from rates with placebo (Minozzi, 2011). A single RCT analyzed the effectiveness of a long-acting naltrexone implant among 306 intravenous heroin users over 24 weeks of follow-up and found that the implant had significantly better treatment outcomes than oral naltrexone, including treatment retention (52.9% vs. 15.7% for oral naltrexone, p<.001) and negative urine tests (63.6% vs. 42.7%, p<.001) (Krupitsky, 2012). The implant is not currently approved for use in the U.S., however. Another placebo-controlled RCT (n=250) found that injectable extended-release naltrexone (Vivitrol) retained patients in treatment longer (median 168 vs. 96 days, p=0.04), reduced rates of relapse (0.8% vs. 13.7%, p<0.001), and increased total abstinence rates (35.7% vs. 22.6%, p=.022) relative to placebo (Krupitsky, 2011). To date, however, Vivitrol has not been compared to other forms of naltrexone in any comparative study.

Methadone, buprenorphine, and naltrexone for adolescents

Limited research exists comparing opioid replacement therapies in adolescent patient populations. In a single retrospective comparative study of 61 patients aged 14-17 years, treatment with methadone resulted in significantly longer program retention compared to treatment with buprenorphine (mean days: 354 vs. 58, p<.01) (Bell, 2006). The use of methadone was also associated with fewer treatment drop-outs, although statistical testing was not performed.
6.3 Dosing and Duration Protocols

Studies examining dosing and duration of maintenance treatment have found both methadone (~100 mg/day) and Suboxone (16-32 mg/day) have clear dose thresholds at which clinical outcomes no longer improve. In terms of dosing frequency, daily methadone appears to produce better outcomes than less frequent dosing, while the dosing frequency of buprenorphine appears to make little difference in outcomes. Data suggest that dose tapering regimens with either methadone or Suboxone have limited success, but that longer tapers are superior to shorter-duration tapers.

Dosage Level

Methadone

We identified nine studies, of which two were RCTs, comparing different dosing levels of methadone. One RCT (Epstein, 2009) compared the effectiveness of 70 mg/day versus 100 mg/day of methadone and concluded that 100mg was more effective at reducing illicit opioid use (42% vs. 20% for 70 mg, p=.01), though treatment retention did not differ. The other RCT (Kennedy, 2013) examined whether daily fixed dosing of 100 mg or daily flexible dosing over 100 mg had any impacts on treatment outcomes and determined that the flexible, high-dose group was less likely to produce drug-free urines; however, there were no differences in retention. Both studies found that higher doses do not reduce cocaine use, and that other treatment interventions may be required to address polydrug abusers.

Findings from selected case series also found that higher, daily doses of methadone (up to but not exceeding 100 mg) were associated with reductions in illicit opioid use and improved retention in treatment (Dunn, 2003; Fonseca, 2011; Gerra 2013). A large retrospective case series (Nosyk, 2010) evaluated 31,724 treatment “episodes” over an 11-year period from a provincial drug dispensation database and found that a higher daily maintenance dose (over 60mg/day) was positively associated with long-term retention in treatment (>3 years). Another large retrospective case series (N=301) examining a prescription database found a significant positive correlation between dose level and retention in treatment, with the best relationship found at 96mg/day (Dickinson, 2003).

Buprenorphine/Suboxone

While higher doses of buprenorphine are associated with better treatment outcomes, there may be certain thresholds at which buprenorphine reaches its maximum effectiveness. One RCT (Montoya, 2004) concluded that 16mg of buprenorphine appears to be the optimal dose for the discontinuation of illicit drug use, particularly for those who are dually dependent on opioids and...
cocaine. In terms of frequency of dosing, two RCTs found that less-than-daily doses of buprenorphine appear to be as effective as daily doses in preventing the use of illicit opioids and retaining patients in treatment (Marsh, 2005; Montoya, 2004).

A comparative cohort study (Fareed, 2012) examined daily dosing levels of buprenorphine greater than 16mg vs. 8-16 mg in 56 patients and found that doses higher than 32mg/day did not have any added benefits in reducing the number of positive urinalyses. Another large case series (N=979) found that maintenance doses between 12-32mg and less-than daily dosing appear to have a positive effect on treatment outcomes, including higher rates of treatment compliance, lower rates of relapse, and reduction of illicit drug use (Leonardi, 2008).

Treatment Duration Protocols

Methadone

There were no RCTs evaluating the use of tapering protocols for methadone maintenance. A large retrospective analysis of nearly 15,000 attempts at dose tapering found that rates of “sustained success”—defined as no treatment re-entry, opioid-related hospitalization, or mortality within 18 months following taper completion—were low overall (5.3%) (Nosyk, 2010). Subsequent stratification of episodes by shorter (<12 weeks) vs. longer (≥12 weeks) taper duration indicated that longer tapers were over three times as likely to result in sustained success, but absolute rates were low for both strata (18.6% vs. 4.6%, p<.05).

Buprenorphine/Suboxone

One RCT (Ling, 2009) found that a shorter Suboxone taper was better for patients when the goal is to discontinue treatment, with nearly half of patients in a 7-day taper group supplying opioid-free urines at the end of treatment versus 30% in a 28-day taper group. Another RCT (Weiss, 2011) evaluated a two-phase tapering regimen after maintenance on Suboxone. The study found that only 6.6% of patients assigned to a two-week taper during a 12-week initial study phase achieved self-reported opioid use of no more than four days in a month, absence of two consecutive opioid-positive urinalyses, and no more than one missing sample taken, whereas 49% of patients achieved this composite successful outcome on a longer tapering course of 12 weeks in a 24-week second study phase.

Finally, a small (n=70) RCT (Sigmon, 2013) examined prescription opioid abusers stabilized on Suboxone, then randomized to a one-, two- or four-week Suboxone taper, followed by subsequent treatment with oral naltrexone. The four-week taper group had a higher proportion of participants successfully maintained on naltrexone (50%) compared to 21% for both 1- and 2-week tapers
(p=.04), as well as the highest rate of opioid abstinence (50% vs. 16% vs. 20%, p=.03) at the end of the 12-week study. The authors noted that, while this study did not involve a direct comparison with indefinite maintenance treatment, rates of retention and abstinence were similar to those seen with maintenance studies. It was also noted that these rates of success were observed in a primarily educated and white population with dependence only on prescription opioids (heroin abusers were excluded from the study).

Adolescents

No studies of alternative dosing or duration protocols conducted specifically in adolescents were identified that included information on the outcomes of interest for this review.

6.4 Important Components of Treatment

Available evidence suggests that several types of positive incentives (e.g., contingency vouchers and rewards), as well as negative incentives (e.g., mandatory medication tapers for missed appointments), appear to improve patient retention in treatment. Evidence on the effectiveness of active, goal-oriented therapy such as cognitive-behavioral and interpersonal therapy is mixed; however, interventions to improve counseling adherence and the use of visual aids for goal-setting and tracking may improve treatment compliance. Supervised medication consumption and more frequent dispensing do not appear to improve adherence to treatment, in part because these interventions tend to be reserved for individuals with existing non-adherence patterns.

Patient compliance with opioid dependence treatment remains a significant obstacle to recovery (Brooner, 2004). Several measures have been employed to improve retention in maintenance treatment programs. The most consistent body of evidence examines the use of positive and negative reinforcement measures. For example, we identified several studies examining the impact of contingency vouchers – monetary rewards for remaining in treatment – on treatment retention and illicit drug use. In these studies, patients received vouchers that increased in monetary value with consecutive drug-free urinalyses. In an RCT of 388 patients enrolled in methadone maintenance programs across the U.S., the use of low-cost abstinence incentives (values ranged from $0 - $20) compared to usual care resulted in significantly more frequent submission of negative urinalyses and consecutive weeks of drug abstinence (Peirce, 2006). Schottenfeld et al. (2005) found similar results among patients receiving methadone or buprenorphine during three months of increasing voucher value; once the escalation of rewards stopped, however, benefits of incentives were not sustained. In studies examining the combined use of contingency vouchers and counseling techniques, patients receiving vouchers during the active study period were more likely
to complete treatment; however, the impact was not sustained following the return of patients to standard care conditions (Brooner, 2007).

The evidence base also includes findings on the use of negative incentives, such as mandatory tapers of methadone dose with or without increased counseling following drug-positive urinalyses and/or missed appointments. In an RCT of adaptive stepped care versus standard treatment in 127 patients, those enrolled in the adaptive stepped care treatment arm (i.e., less convenient dosing times and mandatory dose taper for missed counseling or positive urine tests) attended counseling appointments at a significantly higher rate than patients receiving standard care (83% versus 44%, p<.001), and had fewer poor treatment responses (46% versus 79%, p<.001) (Brooner, 2004). Unlike positive incentives, however, negative interventions appear to be less likely to reduce illicit drug use.

The inclusion of active, goal-oriented psychosocial approaches to counseling in the treatment of opioid dependence is legally mandated in methadone treatment (see Section 3), and has been extensively studied. Evidence on the effectiveness of these approaches is mixed, however. For example, in a systematic review of multiple counseling approaches, the impact of additional psychosocial therapy (beyond standard, mandated counseling) was not found to impact treatment retention or rates of abstinence (Amato, 2011b). In two randomized trials of cognitive behavioral therapy or specialized opioid dependence counseling in place of standard counseling and physician care, no significant differences were found in the rates of opioid abstinence or treatment retention, and outcomes were no better than for brief, clinician-provided counseling (Weiss, 2011; Fiellin, 2013). However, there is some evidence of a “dose-response” with counseling, as patients with higher rates of counseling attendance remain in treatment longer and reduce their illicit drug use (Moore, 2012; Brooner, 2007; Montoya, 2005).

Use of other therapeutic approaches, such as addressing patient fears of withdrawal through Acceptance and Commitment Therapy (ACT), may increase abstinence rates, while innovative behavioral algorithms like the Paced Auditory Serial Addition Task (PASAT) may assist in early identification of patients at higher risk of relapse. There is limited information regarding the incremental effects of peer-to-peer sober networks on treatment outcomes, in part because these programs have historically not accepted individuals receiving opioid replacement therapy; the data that do exist suggest that 12-step programs have limited impact when compared to standard methadone maintenance with other forms of counseling (Hayes, 2004).

Other innovative approaches to opioid dependence treatment include visual treatment guides and maps designed to aid in treatment planning and progress tracking, which have been shown to improve attendance at counseling sessions and retention in treatment (Newbern, 2005).
Interventions may be particularly appropriate for patients with attention deficits. An example of one of these treatment guides can be found in Figure 5 below.

Intensity of treatment for opioid dependent patients is an important consideration in care delivery. While methadone is generally dosed daily in a clinic setting, Suboxone is available for up to one month as a take-home medication, depending on patient stability. We evaluated several studies examining the impact of different dosing approaches on treatment retention. Comparisons of outcomes for supervised and observed versus unobserved dosing yielded no significant differences in retention; however, the use of supervised dosing in patients who had already demonstrated non-adherence to treatment at baseline may have influenced these findings (Dunn, 2009). In contrast, utilization of contingency-based, take-home dosing (one week of medication provided based on demonstrated clinical stability with drug-free urine screens) appears to result in greater treatment retention and lower rates of program drop-out (Gerra, 2011).

Figure 5. Example of a visual treatment guide.

[Diagram showing a visual representation tool for addiction treatment outcomes.]

C: characteristic (counseling goal); P: part (action steps)
6.5 Delivery Models

Alternative delivery mechanisms for counseling in opioid dependence management (e.g., telephonic coaching, group therapy by videoconference) appear to produce similar rates of treatment retention and illicit drug use relative to in-person counseling. Wait-list maintenance interventions and pilot, office-based methadone programs appear to produce outcomes comparable to clinic-based care. Provision of opioid dependence management in alternative settings (e.g., primary care, office-based clinics) with adjunct services appears to retain patients at comparable or better rates relative to standard treatment approaches.

As noted in Section 6.4, evidence is mixed on the benefits of psychosocial therapy in the management of opioid dependence. However, such counseling remains a standard component of medication-assisted treatment. Patient compliance with ongoing counseling is a major challenge, as the frequency, duration, and timing of required sessions may interfere with other treatment-related and unrelated activities (King, 2009). To address this, several studies have evaluated innovative counseling approaches such as Internet-based videoconferencing, telephonic patient support, and stepped-care approaches (Ruetsch, 2012; King, 2009; King, 2006). In these studies, rates of drug-positive urinalyses and treatment adherence were comparable to those reported with the use of standard, in-person counseling at up to 12 months of follow-up, and another study reported 93% patient employment (in patients previously unemployed) following one year of treatment (Kidorf, 2004). Alternative counseling approaches appeared to work best in patients with less severe addiction and less concurrent drug use.

Incorporation of job skills training as an integral part of opioid dependence treatment addresses a crucial deficit in this patient population, as rates of employment are generally low (Magura, 2007), and employment is correlated with improved patient outcomes including treatment retention (Kidorf, 2004). Studies comparing vocational interventions such as training in job-seeking, interviewing, and problem-solving skills, demonstrated modest increases in mean days worked and significantly more paid employment (Magura, 2007; Lidz, 2004).

A central challenge for patients seeking treatment for opioid dependence is access. Extensive waiting lists further complicate already-limited access to effective treatment options (Schwartz, 2006). The impact of “bridging” approaches among patients waiting to enroll in methadone maintenance programs has been evaluated in an RCT (Schwartz, 2006). Provision of up to four months of methadone and emergency counseling (all free of charge to the patient) compared with waitlist control resulted in significantly greater patient enrollment in formal, full-scale methadone treatment programs (76% versus 21%, p<.001) (Schwartz, 2006). Patients in this bridging arm of the study also reported fewer days of heroin and cocaine use and fewer arrests at six months of follow-up.
Several pilot studies have investigated the use of methadone in an office-based environment with take-home dosing provided for up to one month, in contrast to the federally-mandated approach of daily observed dosing in a clinic setting. In two studies evaluating patients with demonstrated stability (no illicit drug use in prior 1-3 years, full-time employment), treatment retention was high (79-98% at 12-60 months), and illicit drug use was low (0.4-2.3%) among all patient groups (Harris, 2006; King, 2006). In the King RCT, patients receiving one month of take-home dosing initiated significantly more new vocational or social activities over a 12-month period as compared to standard treatment (81-97% versus 46%, p<.001). Rates of treatment retention in other pilot studies of office-based methadone are summarized by location, sample size, and retention rates in Table 6 below.

Table 6. Published studies of office-based methadone medical management.

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Location</th>
<th>Number of Enrolled Patients</th>
<th>Patients Retained in Treatment (duration of observation period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senay, 1994</td>
<td>Chicago, IL</td>
<td>130</td>
<td>69% (1 year)</td>
</tr>
<tr>
<td>Schwartz, 1999</td>
<td>Baltimore, MD</td>
<td>21</td>
<td>71% (12 years)</td>
</tr>
<tr>
<td>Salsitz, 2000</td>
<td>New York, NY</td>
<td>158</td>
<td>84% (15 years)</td>
</tr>
<tr>
<td>Merrill, 2005</td>
<td>Seattle, WA</td>
<td>30</td>
<td>93% (1 year)</td>
</tr>
</tbody>
</table>

In studies of patients who were not clinically stable and currently using illicit drugs, treatment retention in programs featuring take-home doses appears to be comparable to or better than that in standard methadone programs, but other outcomes are inferior. For example, one study found that newly enrolled patients with unrestricted take-home methadone doses had significantly increased risks of positive urine screens, criminal activity, and self-diversion; however, in a separate group with contingency restrictions (demonstrated clinical stability and negative urinalysis) on take-home doses, rates of these outcomes were similar to standard methadone dosing (Gerra, 2011).

Other studies have evaluated alternative treatment settings for delivery of medication-assisted treatment (with Suboxone/buprenorphine), including hospital-based clinics, community-based clinics, and primary care offices. Findings from these studies suggest that flexible treatment settings may provide benefits in terms of treatment retention. In one RCT, patients (n=94) were assigned to Suboxone treatment within an opioid-treatment program (OTP), a primary care office [psychiatrist’s private practice (PCS)], and a group-based cognitive behavioral therapy program.
known as the manualized Matrix Model (MMM) (Miotto, 2012). Among patients remaining in treatment beyond nine weeks, OTP participants had statistically-significantly higher drop-out rates compared to PCS and MMM patients (79% vs. 67% and 48% for PCS and MMM respectively, p=.05). However, the number of weeks that patients were retained did not differ statistically between groups, as shown in Table 7 below.

Table 7. Treatment retention among patients receiving opioid dependence treatment in alternate settings.

<table>
<thead>
<tr>
<th>Retention</th>
<th>OTP (n=28)</th>
<th>PCS (n=33)</th>
<th>MMM (n=33)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 9</td>
<td>53.6%</td>
<td>39.3%</td>
<td>54.6%</td>
<td>0.39</td>
</tr>
<tr>
<td>Week 20</td>
<td>21.4%</td>
<td>33.3%</td>
<td>51.5%</td>
<td>0.05</td>
</tr>
<tr>
<td>Mean # weeks retained</td>
<td>14</td>
<td>19</td>
<td>25</td>
<td>0.11</td>
</tr>
</tbody>
</table>

MMM: manualized Matrix Model; OTP: opioid-treatment program; PCS: psychiatrist’s private practice

An additional RCT examined integration of opioid dependence treatment into HIV care at a specialty clinic (Lucas, 2010). Ninety-three HIV patients were randomized to a buprenorphine-based induction and maintenance program at the clinic or to standard case management and referral to a traditional OTP. Enrollment and retention in opioid agonist treatment at 12 months of follow-up was significantly greater for those patients receiving integrated care at the clinic compared to those referred to external opioid dependence treatment (74% versus 41%, p<.001) (Lucas, 2010).

Adjunct services such as education on drug risk behavior, HIV/AIDS prevention education, and family counseling improved treatment outcomes in some but not all studies. For example, in an analysis of structural-level factors correlated with success among 28 methadone maintenance programs treating a total of 560 patients, provision of at least two kinds of comprehensive services (including individual, group, and/or family counseling and skills training) was significantly but modestly associated with higher treatment retention rates (58% versus 50%, p<.01) (Lin, 2010); in contrast, an evaluation of individual- and group-based methadone education and skills training provided by health educators failed to reduce illicit drug use at nine months of follow-up relative to standard treatment (Li, 2013).
7. Economic Evaluation

The economic impact of treatment for opioid dependence has been evaluated across multiple settings and perspectives. While the published economic literature is too substantial to describe in detail here, findings from these studies have followed two very consistent themes. One is that MAT, whether with methadone or buprenorphine-containing agents, is highly cost-effective or cost-saving to society, particularly in analyses that incorporate costs of criminal justice, victimization, and lost productivity (Schackman, 2014; Zarkin, 2005; Zaric, 2000; Doran, 2008; Bell, 2007; Barnett, 2010; Barnett, 2001). The other is that MAT has consistently been shown to be cost-effective or cost-saving in relation to treatment without drug therapy (i.e., detoxification) (Polsky, 2010; McCarty, 2010; Baser, 2011; Masson, 2004).

In contrast, analyses comparing different methods of MAT have generally found very little to distinguish these approaches. For example, a comprehensive systematic review and economic evaluation conducted by the UK’s University of Birmingham Health Services Management Centre (Connock, 2007) found no major differences in clinical effectiveness between methadone and buprenorphine maintenance programs other than better retention in methadone maintenance as previously described (see Section 6). Findings from the economic evaluation indicated differences in quality-adjusted life expectancy of <5 days between methadone and buprenorphine as well as minimal differences in cost.

While the findings described above have been quite consistent, we nevertheless felt it important to assess the comparative value of different approaches to treating opioid dependence with a focus on the realities of treatment in the U.S. setting, as well as to document the costs of opioid dependence in New England and the potential budgetary impact of expanding access to MAT in the region. Methods and results for the comparative value analyses are described in detail in the sections that follow. Our approach for the budgetary impact analysis is described beginning on page 67.

7.1 Cohort Model: Methods

Overview

We developed a simulation model to evaluate the comparative value of different approaches to treating opioid dependence among 1,000 hypothetical patients entering treatment. Model outcomes and costs were calculated over a two-year time horizon; consistent with methods for economic evaluation, outcomes and costs occurring in the second year were discounted using a 3% rate (Gold, 1996). Each patient could have one of four possible outcomes of treatment, as listed on the following page:
- In treatment
- Out of treatment, drug-free
- Out of treatment, relapsed
- Dead

We adopted a societal perspective for this analysis given the potential for significant impacts of opioid dependence outside of the health care system. Costs therefore included not only those of substance abuse drug therapy and related services as well as other health care expenditures, but also “social costs” of law enforcement, victimization, and productivity loss (see “Costs” below). Cost-effectiveness was calculated alternatively as the cost per relapse averted and the cost per death averted respectively. All key model inputs can be found in Table 8 on page 62.

Treatment Strategies

We considered multiple treatment strategies for this evaluation. These included maintenance treatment with either methadone or Suboxone, stabilization with Suboxone followed by a 4-week taper to either oral naltrexone or Vivitrol, and use of oral naltrexone or Vivitrol alone for opioid abstinence treatment.

Clinical Outcomes

Rates of retention in treatment for methadone, Suboxone, and oral naltrexone alone (63%, 52%, and 28%, respectively) were estimated using pooled rates of retention reported in recent Cochrane reviews (Mattick, 2014; Minozzi, 2011). We calculated retention with Vivitrol alone to be 50% greater than that of oral naltrexone based on findings from a recent placebo-controlled RCT (Krupitsky, 2011). Finally, we estimated retention with the tapering strategies based on findings from an RCT of a Suboxone-oral naltrexone approach (Sigmon, 2013). There are no published data on the use of Vivitrol as part of a tapering strategy. Because this long-acting formulation has potential adherence advantages over oral naltrexone, however, we assumed a 5% improvement in overall retention if Vivitrol was used as the opioid antagonist.

We assumed the proportion of patients “out of treatment” who were drug-free versus relapsed to be equal, based on data from a three-year cohort study of maintenance treatment outcomes (Comiskey, 2010). Importantly, we applied this to methadone as the treatment with the highest reported rate of retention. Given that 63% of patients receiving methadone were retained in treatment, we estimated that 18.5% of patients each would be drug-free and relapsed respectively (i.e., an equal division of the 37% not still in treatment at two years). However, we could not apply these proportions directly to other treatment strategies with inferior retention rates, as this would have resulted in counterintuitively higher proportions of drug-free individuals. Instead, we set the
universal “drug-free” rate based on the methadone rate (18.5%) which was reduced for each strategy by differential rates of mortality (see below). The rate of relapse for all other strategies was calculated as the proportion remaining after accounting for rates of retention in treatment, out of treatment and drug-free, and mortality.

Mortality for relapsed patients was estimated to be 1.4% annually, based on a long-term follow-up study (mean: 8.3 years) of an RCT of methadone versus buprenorphine maintenance (Gibson, 2008). We estimated annual rates of death among patients in methadone and buprenorphine maintenance treatment to be 0.2% and 0.02% based on drug overdose death rates reported among treatment enrollees in France (Auriacombe, 2004). We assumed that patients out of treatment and drug-free to be “recovered” and therefore would have no excess risk of substance-abuse related death. We assumed the same for patients in treatment with oral naltrexone or Vivitrol, given the low potential for abuse or diversion and no risk of fatal overdose with this agent.

Costs

Costs included those of drug therapy for opioid dependence, other substance abuse services, other health care services (i.e., other than for routine substance abuse treatment), and “social costs” of law enforcement, victimization, and productivity loss. We obtained costs of drug therapy and other substance abuse services for each strategy of interest from a retrospective analysis of health care claims from commercial payers and managed Medicaid plans (Baser, 2011). Costs of other health care services among relapsed patients as well as those who died were estimated to total approximately $20,000 annually based on an assessment of the attributable costs of opioid abuse (White, 2005); we assumed these would be reduced by approximately 50% for patients in treatment based on data on drug-treated versus untreated patients in the Baser study (Baser, 2011). Patients who were out of treatment and drug-free were assumed to incur treatment costs only in the first year; health care costs in the second year were estimated using World Health Organization (WHO) figures for per-capita health care costs (WHO, 2013).

We estimated social costs of opioid dependence to total $106,000 annually, based on an analysis of crime frequency and severity as well as employment impacts on both perpetrators and victims among 114 opioid abusers in Canada (Wall, 2000). We further assumed that law enforcement and victimization costs would be reduced by 75% among patients in treatment, consistent with reported reductions in arrest frequency and severity in a two-year follow-up study of methadone maintenance treatment (Schwartz, 2009). For all treatment strategies other than methadone, we assumed a 50% reduction in productivity loss costs, based on data on increased employment among patients enrolled in MATs (SAMHSA, 2006). We assumed no benefit for methadone in this regard given the requirements for daily in-person dosing and intensive counseling in U.S. settings.
Table 8. Key model inputs.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention in treatment (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMT</td>
<td>63.0</td>
<td>Mattick, 2014</td>
</tr>
<tr>
<td>BMT</td>
<td>52.3</td>
<td>Mattick, 2014</td>
</tr>
<tr>
<td>Suboxone 4 wks, oral NTX taper</td>
<td>50.0</td>
<td>Sigmon, 2013</td>
</tr>
<tr>
<td>Suboxone 4 wks, Vivitrol taper</td>
<td>55.0</td>
<td>Assumption</td>
</tr>
<tr>
<td>Oral NTX alone</td>
<td>27.7</td>
<td>Minozzi, 2011</td>
</tr>
<tr>
<td>Vivitrol alone</td>
<td>41.6</td>
<td>Krupitsky, 2011</td>
</tr>
<tr>
<td>Out of treatment, relapsed (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMT</td>
<td>18.5</td>
<td>Mattick, 2014; Comiskey, 2010</td>
</tr>
<tr>
<td>BMT</td>
<td>29.2</td>
<td>Mattick, 2014</td>
</tr>
<tr>
<td>Suboxone 4 wks, oral NTX taper</td>
<td>31.5</td>
<td>Sigmon, 2013</td>
</tr>
<tr>
<td>Suboxone 4 wks, Vivitrol taper</td>
<td>26.5</td>
<td>Assumption</td>
</tr>
<tr>
<td>Oral NTX alone</td>
<td>53.8</td>
<td>Minozzi, 2011</td>
</tr>
<tr>
<td>Vivitrol alone</td>
<td>40.0</td>
<td>Krupitsky, 2011</td>
</tr>
<tr>
<td>Out of treatment, drug-free (%)</td>
<td>16.9-17.7</td>
<td>Comiskey, 2010</td>
</tr>
<tr>
<td>Annual mortality (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out of treatment, relapsed</td>
<td>1.4</td>
<td>Gibson, 2008</td>
</tr>
<tr>
<td>In treatment, MMT</td>
<td>0.2</td>
<td>Auriacombe, 2004</td>
</tr>
<tr>
<td>In treatment, BMT</td>
<td>0.02</td>
<td>Auriacombe, 2004</td>
</tr>
<tr>
<td>Annual treatment costs (Drug therapy/ Other substance abuse services, 2013$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMT</td>
<td>493/9,884</td>
<td>Baser, 2011</td>
</tr>
<tr>
<td>BMT</td>
<td>3,030/5,838</td>
<td></td>
</tr>
<tr>
<td>Suboxone 4 wks, oral NTX taper</td>
<td>1,181/3,904</td>
<td></td>
</tr>
<tr>
<td>Suboxone 4 wks, Vivitrol taper</td>
<td>6,890/3,493</td>
<td></td>
</tr>
<tr>
<td>Oral NTX alone</td>
<td>930/3,420</td>
<td></td>
</tr>
<tr>
<td>Vivitrol alone</td>
<td>6,639/3,009</td>
<td></td>
</tr>
<tr>
<td>Annual costs of other health care services (2013$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In treatment</td>
<td>10,391</td>
<td>White, 2005; Baser, 2011</td>
</tr>
<tr>
<td>Out of treatment, relapsed</td>
<td>20,111</td>
<td>White, 2005</td>
</tr>
<tr>
<td>Out of treatment, drug-free</td>
<td>9,007</td>
<td>WHO, 2013</td>
</tr>
<tr>
<td>Annual social costs of opioid dependence (2013$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Law enforcement</td>
<td>47,984</td>
<td>Wall, 2000</td>
</tr>
<tr>
<td>Victimization</td>
<td>50,471</td>
<td></td>
</tr>
<tr>
<td>Productivity loss</td>
<td>7,878</td>
<td></td>
</tr>
</tbody>
</table>

*Proportion of patients out of treatment and drug free set as constant (18.5%) based on proportion equal to relapse for methadone; reduced for each treatment strategy by rate of mortality
MMT: methadone maintenance treatment; BMT: buprenorphine maintenance treatment; NTX: naltrexone
Costs expressed in other currencies were converted to U.S. dollar amounts using prevailing exchange rates in the year in which they were reported. All costs are presented as 2013 U.S. dollar amounts; we adjusted these when necessary using the medical care component of the U.S. Consumer Price Index (Bureau of Labor Statistics, 2014).

Key Model Assumptions

Major assumptions made for this analysis, including those previously described, are noted in Table 9 below. Importantly, we assumed that all clinical outcomes were associated with the initial treatment strategy only; we did not assume switching between strategies (other than in the tapering strategy, which by definition involves a change in treatment modality), nor did we model the impact of readmission to treatment for patients who had relapsed. Both of these approaches would have necessitated complex “time-to-event” analyses for which detailed observational data are unavailable. We also did not include any information on competing mortality risks given the short-term nature of the model. Finally, we did not include any estimate of other “social” costs, such as caregiver burden, in our calculations of overall costs. Nonetheless, the components of cost included in this analysis are consistent with those of other major economic evaluations in the field.

Table 9. Key assumptions for cohort model of opioid dependence treatment.

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes driven by initial treatment strategy only</td>
<td>Lack of detailed, time-dependent data on therapy switch and/or readmission to treatment</td>
</tr>
<tr>
<td>Competing mortality risks (beyond those related to in- vs. out-of-treatment status)</td>
<td>Unlikely to affect outcomes in short-term model</td>
</tr>
<tr>
<td>Certain social costs (e.g., caregiver burden) not included</td>
<td>Cost components consistent with other published economic evaluations</td>
</tr>
<tr>
<td>Absolute increase in retention of 5% for taper to Vivitrol vs. oral naltrexone</td>
<td>Assumption; no available data</td>
</tr>
<tr>
<td>Rate of “drug-free” patients constant (modifiable only by differential rate of death)</td>
<td>Counterintuitive to assume that higher rates of treatment “drop out” would translate to higher rates of drug-free individuals</td>
</tr>
<tr>
<td>No benefit of methadone in reducing productivity loss</td>
<td>Assumption that need for daily in-person dosing and intensive treatment would counteract any potential for improved employment</td>
</tr>
</tbody>
</table>
7.2 Cohort Model: Results

Two-year outcomes and costs among 1,000 hypothetical individuals entering treatment can be found in Table 10 on the following page. Model results are first presented for maintenance treatment with methadone and Suboxone as the two most common approaches, followed by alternative strategies in descending order of effectiveness.

The model results suggest that, of 1,000 initial patients, approximately 630 receiving methadone maintenance would be retained in treatment after two years versus approximately 520 for Suboxone maintenance. The naltrexone tapering strategies would retain 500-550 of the 1,000 patients. Use of Vivitrol or oral naltrexone alone produced the lowest retention rates of approximately 420 and 280 per 1,000 respectively. Consistent with the relative rankings of treatment retention outcomes, methadone maintenance produced the lowest relapse rate (~190 per 1,000), while oral naltrexone produced the highest (540 per 1,000). Rates of death were <1% for all strategies except Vivitrol and oral naltrexone alone (12-16 per 1,000), reflecting higher mortality rates associated with relapse.

Two-year costs of methadone drug therapy (~$700) were much lower than drug costs for all other strategies except oral naltrexone alone. In contrast, costs of other substance abuse services for methadone maintenance (~$14,000) were 2-7 times higher than costs of maintenance with other strategies, reflecting the regulated intensity of methadone-based care. This difference was counteracted somewhat by lower costs of other health care services for methadone versus all other strategies, reflecting reduced costs of these services among patients retained in treatment.

Putting together drug therapy costs, the costs for other substance abuse services, and the costs of all other health care services, the sum of all two-year health care costs did not substantially differ across maintenance treatment strategies (range: $32,000 - $39,000). Health care costs were lowest for the Suboxone-oral naltrexone taper, due to the generic availability of naltrexone, the short-term duration of Suboxone treatment, and lower intensity of other substance abuse services for patients receiving naltrexone versus continued maintenance treatment. Health care costs were highest for methadone, as reductions in the costs of other health care services only offset a portion of the higher costs of more intensive substance abuse treatment. While not reflected in the table, the two-year health care costs for relapsed or dead patients were nearly $40,000, meaning that costs of substance abuse treatment were entirely offset with any form of treatment.

When social costs were considered as well, maintenance therapy options appeared to produce significant overall cost-savings. The two-year social costs associated with opioid dependence are estimated to be over $200,000, 4-5 times greater than the cost of health care services for each strategy. All versions of opioid dependence treatment reduced social costs substantially compared to no treatment, but methadone stands out with 10-35% reductions in social costs over all
alternative approaches due to its higher retention rates. As a result, total (health care plus social) costs were lower for methadone maintenance ($131,000) than for any other treatment strategy. Total costs were similar among the maintenance and tapering strategies, but were substantially higher for Vivitrol ($157,000) and oral naltrexone ($175,000) alone because they were the least effective. It should be noted again, however, that the total cost figures for all treatment strategies are lower than the total costs estimated for an individual with opioid dependence who is not initiated on any form of treatment.

Table 10. Two-year outcomes and costs among 1,000 hypothetical patients treated for opioid dependence.

<table>
<thead>
<tr>
<th>Outcome/Cost</th>
<th>MMT</th>
<th>BMT</th>
<th>SUB/VIV Taper</th>
<th>SUB/Oral NTX Taper</th>
<th>Vivitrol Alone</th>
<th>Oral NTX Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment outcome (per 1,000):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In treatment</td>
<td>630</td>
<td>523</td>
<td>550</td>
<td>500</td>
<td>416</td>
<td>277</td>
</tr>
<tr>
<td>Relapsed</td>
<td>185</td>
<td>292</td>
<td>265</td>
<td>315</td>
<td>400</td>
<td>538</td>
</tr>
<tr>
<td>Drug–free</td>
<td>177</td>
<td>176</td>
<td>177</td>
<td>176</td>
<td>173</td>
<td>169</td>
</tr>
<tr>
<td>Died</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Cost ($, per patient):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug therapy</td>
<td>699</td>
<td>3,655</td>
<td>8,553</td>
<td>1,249</td>
<td>6,585</td>
<td>665</td>
</tr>
<tr>
<td>Other SA services</td>
<td>14,017</td>
<td>7,043</td>
<td>4,146</td>
<td>4,297</td>
<td>2,985</td>
<td>2,446</td>
</tr>
<tr>
<td>Other health care</td>
<td>23,926</td>
<td>25,993</td>
<td>25,454</td>
<td>26,441</td>
<td>28,109</td>
<td>30,844</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>38,642</td>
<td>36,691</td>
<td>38,153</td>
<td>31,988</td>
<td>37,679</td>
<td>33,954</td>
</tr>
<tr>
<td>Social costs</td>
<td>92,068</td>
<td>102,337</td>
<td>98,033</td>
<td>105,917</td>
<td>119,239</td>
<td>141,076</td>
</tr>
<tr>
<td>TOTAL</td>
<td>130,710</td>
<td>139,028</td>
<td>136,187</td>
<td>137,905</td>
<td>156,918</td>
<td>175,030</td>
</tr>
</tbody>
</table>

Table 11 on the following page summarizes our assessment of the cost-effectiveness of these opioid dependence treatment strategies, focusing on both the cost per additional relapse averted and the cost per additional death averted. The universal referent treatment was oral naltrexone alone as the alternative with the lowest retention rate; other comparisons of interest (e.g., methadone versus Suboxone maintenance) were conducted if feasible. Note that the available ratios are based on health care costs only; when total costs are considered, the most effective strategies are also the least costly, which precludes calculation of cost-effectiveness ratios.

Cost-effectiveness of different maintenance options (considering health care costs only)

Comparisons of each treatment strategy to oral naltrexone alone yielded relatively similar estimates of the cost per additional relapse averted for methadone maintenance ($13,000), Suboxone.
maintenance ($11,000), and Suboxone stabilization followed by a taper to Vivitrol ($15,000). The oral naltrexone taper strategy was both less costly and more effective than oral naltrexone alone. Finally, the cost per relapse averted for Vivitrol alone was approximately $27,000, as it was approximately $4,000 more costly and prevented fewer relapses than the maintenance and taper strategies.

Table 11. Comparative cost-effectiveness of opioid dependence treatments (selected comparisons).

<table>
<thead>
<tr>
<th>Outcome/Cost</th>
<th>MMT</th>
<th>BMT</th>
<th>SUB/VIV Taper</th>
<th>SUB/Oral NTX Taper</th>
<th>Vivitrol Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Care Costs Only vs. oral NTX alone:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ per relapse averted</td>
<td>$13,000</td>
<td>$11,000</td>
<td>$15,000</td>
<td>Less costly, more effective</td>
<td>$27,000</td>
</tr>
<tr>
<td>$ per death averted</td>
<td>$608,000</td>
<td>$395,000</td>
<td>$531,000</td>
<td>Less costly, more effective</td>
<td>$927,000</td>
</tr>
<tr>
<td>MMT vs. BMT:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ per relapse averted</td>
<td>$18,000</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$ per death averted</td>
<td>$2.5 m</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>VIV vs. oral NTX Taper:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ per relapse averted</td>
<td>---</td>
<td>---</td>
<td>$123,000</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$ per death averted</td>
<td>---</td>
<td>---</td>
<td>$4.3 m</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total Costs vs. oral NTX alone:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ per relapse averted</td>
<td>Less costly, more effective</td>
</tr>
<tr>
<td>$ per death averted</td>
<td>Less costly, more effective</td>
</tr>
<tr>
<td>MMT vs. BMT:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ per relapse averted</td>
<td>Less costly, more effective</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$ per death averted</td>
<td>Less costly, more effective</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>VIV vs. oral NTX Taper:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ per relapse averted</td>
<td>---</td>
<td>---</td>
<td>Less costly, more effective</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$ per death averted</td>
<td>---</td>
<td>---</td>
<td>Less costly, more effective</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

MMT: methadone maintenance treatment; BMT: buprenorphine maintenance treatment; NTX: naltrexone; SUB: Suboxone; VIV: Vivitrol
Estimates of the cost per death averted were much higher ($400,000 - $900,000), as absolute differences in mortality were very small across the strategies. It is worth noting again that mortality estimates in this study were restricted to deaths related to substance abuse for those out of treatment and to treatment-related deaths (overdoses) for those in maintenance treatment. In addition, no excess mortality was assumed while patients were on oral naltrexone or Vivitrol.

Comparisons of methadone to Suboxone maintenance yielded estimates of $18,000 per relapse averted and $2.5 million per death averted, as health care costs with methadone were $2,000 greater and relapse rates differed by ~10% in favor of methadone. Comparisons of tapering strategies with Vivitrol versus oral naltrexone yielded cost-effectiveness estimates of $123,000 per relapse averted and $4.3 million per death averted.

Cost-effectiveness of different maintenance options (considering total costs)

As mentioned previously, inclusion of social costs in a total cost calculation changes the picture of these comparisons. When all costs are considered, all other treatment strategies prevent more relapses, result in fewer deaths, and have lower costs than oral naltrexone alone. Methadone maintenance is also somewhat more effective and less expensive than Suboxone maintenance, and a tapering strategy using Vivitrol has better clinical results and slightly lower costs than an oral naltrexone tapering strategy.

While adolescents are clearly an important subpopulation, data were too scarce to populate a complete model focusing only on this group. Nevertheless, it seems reasonable to conclude that the economic benefits seen in this model would be increased in adolescents given that crime-based costs and long-term productivity losses may be even greater in teenagers not receiving adequate treatment.

7.3 Budget Impact Analysis: Methods

The budget impact analysis was also conducted over a two-year period. The population under consideration was limited to those individuals with opioid dependence who are either receiving treatment or who need but are not receiving any treatment (i.e., patients out of treatment but drug-free were not considered). We generated estimates of the numbers of treated and untreated patients for each New England state based on data collected in the 2009-2012 rounds of the National Survey of Drug Use and Health (NSDUH) (SAMHSA, 2013c). Information was collected for both adolescents (age 12-17) and adults (18+).
At baseline, we assumed that treated patients would receive maintenance with either methadone or Suboxone, and weighted the proportion receiving each based on 2012 data from SAMHSA’s National Survey of Substance Abuse Treatment Services (N-SSATS) (SAMHSA, 2013b). Costs for treated patients were identical to those generated for the cohort model (including social costs) and were also weighted by the proportion of methadone versus Suboxone recipients. We assumed that the costs for untreated patients would be equal to cohort model costs for relapsed patients.

We also generated estimates of the number of deaths that would occur for patients in and out of treatment based on the sources used in the cohort model. Mortality rates for patients in treatment were also weighted by the maintenance modality received.

We then assessed the effects that moving untreated patients into treatment would have on deaths and total costs in the region over a two-year period. All newly-treated patients were assumed to be treated with Suboxone, as we felt that expanded access to Suboxone was more realistic than methadone expansion in the current regulatory environment. Consistent with estimates from the cohort model, slightly more than 50% of these newly treated patients would be expected to remain in treatment after two years. Rates of increase in the proportion of individuals receiving treatment ranged from 5-50%.

7.4 Budget Impact Analysis: Results

Currently, it is estimated that, of the 133,000 New Englanders with opioid dependence, 40,000 receive maintenance treatment. Moving 10% of untreated patients into treatment would increase the size of the population retained in treatment by 12%, to 45,000. Moving 50% into treatment would increase the treated population by over 60%, to 64,000.

Estimates of the numbers of substance abuse-related deaths for New England are presented in Figure 6 on the following page for adolescents, adults, and in total. At baseline, approximately 2,800 deaths would be expected to occur in a two-year period, 450 of which would be among adolescents. Expanding treatment access by 10% would reduce the death count by nearly 150 (30 of whom would be adolescents). Aggressive expansion would produce more substantial results. For example, a 50% expansion would be expected to save nearly 700 lives in two years, including over 100 adolescents.
Figure 6. Impact of expanding access to maintenance treatment on substance-abuse related deaths in New England, over a two-year timeframe.

When considering health care costs alone, the additional costs associated with expanding access to maintenance treatment are essentially fully offset by savings in the cost of other health care services. Current health care costs for all individuals with opioid dependence are estimated to total approximately $5.2 billion for the region ($1.5 and $3.7 billion for treated and untreated individuals, respectively). Moving 5% of untreated individuals into treatment would increase treatment expenditures by $73 million, but result in reductions in the cost of other health care services by about $80 million. Greater levels of expansion would result in greater net cost savings. For example, a 10% expansion would increase treatment costs by $183 million, but reductions in the cost of other health care services of nearly $200 million would result in net cost savings of $15 million. A 25% expansion would more than double net cost savings to approximately $35 million.

The effects of expanded access to maintenance treatment on total (health care plus social) costs are more dramatic, as presented in Figure 7 on the following page. At baseline, total costs of opioid dependence in the region are estimated to be approximately $29 billion over two years, 81% of which is generated by dependent individuals not currently in treatment. At each level of treatment expansion, net savings are substantial, given that costs of health care services are already offset by treatment and reductions in social costs are pronounced. For example, expanding treatment by as little as 5% would decrease total costs for the entire population of individuals with opioid dependence by approximately $220 million. A 25% expansion would decrease overall population costs by approximately $1.3 billion, and a 50% expansion would decrease overall costs by $2.6
billion. Put another way, each additional health care dollar spent on expanding maintenance treatment would return approximately $1.80 in savings. Importantly, all of these savings are realized even under the assumption that only slightly more than 50% of individuals newly-accessing Suboxone treatment would remain in treatment after two years.

While the budget impact of expanding treatment was not estimated separately for adolescents versus adults, patients aged 12-17 are estimated to represent approximately 20% of the treated population in the NSDUH survey data (SAMHSA, 2013c). If cost levels are assumed to be similar for both subpopulations, a 5% expansion in the number of adolescents treated would produce approximately $44 million in savings for these patients.

Figure 7. Total costs (health care plus social costs of opioid dependence) among treated and untreated persons with opioid dependence in New England, assuming different levels of increase in percentage of individuals brought into treatment.
7.5 Summary

The findings of the simulation model suggest that maintenance treatment with either methadone or Suboxone retains more patients in treatment over a two-year period in comparison to use of either oral or injectable naltrexone for abstinence treatment alone. Methadone and Suboxone maintenance have very similar outcomes and overall health care costs. Compared to use of oral naltrexone alone, maintenance treatment increases the cost of health care services (i.e., substance abuse and other health care services) by $3,000-$5,000, but estimates of the cost per additional relapse averted are relatively low: <$15,000 in our analysis. As a benchmark, published estimates of the cost per relapse in other mental health conditions (e.g., depression, schizophrenia) have considered estimates <$50,000 per relapse averted to be a cost-effective use of resources (Scott, 2003; Citrome, 2014; Mihalopoulos, 2004).

When the “social” costs of law enforcement, crime victimization, and lost productivity were included in our estimates, maintenance treatment becomes both more effective and less costly than abstinence treatment with oral naltrexone. For example, methadone would still be cost-saving overall versus oral naltrexone on a societal basis even if substance abuse services were provided free of charge.

Our findings for strategies involving stabilization with short-term Suboxone followed by a taper to either oral naltrexone or Vivitrol are also intriguing, as these strategies are estimated to produce retention figures comparable to methadone maintenance but without requirements for continued opioid replacement. These findings should be interpreted with great caution, however, as our estimate of the effectiveness of oral naltrexone was based on a single, small (n=70) RCT (Sigmon, 2013), and Vivitrol’s retention benefits were assumed in the absence of published data on its use in a tapering strategy. However, it is important to note that treatment with any of these strategies reduces costs in comparison to no treatment. The two-year costs of untreated opioid dependence are estimated to total nearly $250,000 per untreated individual; these costs are reduced by nearly half with maintenance treatment strategies and even by 30% with the least effective strategy considered (oral naltrexone alone).

The impact of moving untreated individuals into treatment was further confirmed by our budgetary impact analysis. The total health care plus social costs of opioid dependence are estimated to total $29 billion annually in the region, 81% of which is generated by untreated patients. In addition, nearly 3,000 substance abuse-related deaths occur over a two-year period. Any expansion of the treated population will produce cost reductions for the region of approximately $1.80 for every dollar invested over a two-year period. If 50% of currently untreated patients had treatment available to them, cost savings for the region would be nearly $3 billion and nearly 700 lives would be saved, 100 of which would be adolescents. It is important to remember that estimated
reductions in both the number of substance abuse-related deaths and costs occurred even with an assumed treatment retention rate for Suboxone of only slightly more than 50%.

We note some limitations of our analysis. First, we assumed that all outcomes would be driven by initial treatment; in reality, some patients experiencing relapse would re-enter treatment within the two-year period and be treated successfully. There are insufficient data on the success of retreatment for all of the strategies of interest, so any estimate would involve significant conjecture on our part. Nonetheless, our estimates of the long-term outcomes of initial maintenance treatment are consistent with those of other cohort studies in the literature (Comiskey, 2010).

Our estimates of health care and social costs come from disparate sources that may not be fully generalizable to the region. For example, social costs were obtained from a landmark study, but one nevertheless conducted in Canada; this study also included an estimate of health care costs, but we chose to exclude it and focus on a U.S.-based study for that component. However, our results are robust to changes in all cost estimates. For example, reducing the social cost estimates by half does not change the order of findings for each treatment strategy, and still produces net cost savings of nearly $900 million if treatment is expanded to 50% of currently untreated persons in New England.
8. Real World Perspectives on Barriers, Innovations, & Opportunities in New England

ICER staff conducted unstructured interviews with 15 regional and national policy experts to understand real world perspectives on practice and delivery system innovations, barriers to change, and opportunities for improving how patients utilize and access opioid dependence treatment in New England. Interviewees came from each New England state and represented OTPs, advocacy organizations, state agencies, clinical societies, academic institutions, and outpatient addiction treatment centers specializing in use of Suboxone and/or naltrexone. The sections below summarize these conversations and distill key lessons or recommendations supported by a large majority of policy experts.

8.1 Management of Treatment

1. Patients should be screened for addiction in primary care settings in order to support early interventions for recovery.

Policy experts felt that regular screening for addiction is extremely important for recognizing dependence in its early stages and appropriately referring patients to resources for recovery. Experts noted that primary care physicians rarely screen for addiction during general exams, meaning that many patients go on to be misdiagnosed with conditions like depression without ever addressing their substance abuse. Physicians cited the need for greater efforts to train and support primary care physicians in recognizing addiction disorder, and pointed to training and physician mentorship programs from ASAM and AAAP that assist primary care providers to incorporate screening, brief interventions, and referrals to substance abuse treatment centers as a standard part of care as good examples.

2. A comprehensive initial assessment and individualized treatment plan targeted to support a patient’s unique health care needs are essential for patient success.

Experts agreed that the treatment needs for each patient with opioid dependence are different, and therefore clinicians must adequately assess patients to determine the level, intensity, and modality of treatment most appropriate for his or her unique circumstances. A comprehensive assessment that determines a patient’s overall health risk; presence of co-morbid disorders or conditions, including chronic pain or co-occurring substance abuse; social and behavioral challenges; and extent of dependence is considered crucial to adequately refer patients to
necessary services and develop a care plan individualized to meet the patient’s needs. The treatment plan that is ultimately developed should address the full spectrum of a patient’s needs, not just his or her dependence. Clinicians providing the initial assessment should be qualified and adequately trained in addiction disorders.

Given how broadly patient expectations and treatment objectives vary, some experts suggested that treatment plans involve short-term goal setting with the patient using a structured treatment protocol designed to achieve those objectives. Experts noted that treatment plans should evolve based on a patient’s level of engagement and stage of change, and therefore flexibility with treatment goals is essential.

Some stakeholders also felt that treatment protocols that include negative consequences for failure to follow treatment are detrimental to patient success. Though protocols that set forth strict expectations are important, the clinicians surveyed suggested that motivational interviewing, rewards for healthy behaviors, and other positive reinforcement techniques better support patient progress.

Policy/Practice Innovation: Individualized treatment authorization criteria in Maine

In Maine, the state Medicaid program (MaineCare) has adopted new authorization criteria for Suboxone designed to support individualized treatment. State regulation requires that MaineCare only cover Suboxone for a period of 24 months, after which patients must demonstrate “medical necessity,” or that a patient has been successful with treatment, to remain on medication. What is defined as medically successful for one patient may not apply to another. Under this model, patients determine goals for treatment individually with their physician, and it is to each physician’s clinical discretion whether or not Suboxone is effective after the initial 24-month period in achieving treatment objectives. Criteria for medical necessity may include improvements in living stability, active employment seeking, regained social relationships, etc., and patients need not achieve all criteria for treatment to be authorized. Policymakers in Maine suggest that establishing an individualized approach for authorization has helped to reinforce the physician/patient relationship and promote a positive, holistic approach to treatment.

3. Maintenance therapy is an important component of any treatment plan and the selection of medication for initial treatment should be guided by a full understanding of a patient’s addiction history, tolerance, and psychosocial environment.

Opioid dependence is a chronic medical condition that requires a long-term treatment approach. There is a consensus among the experts interviewed that maintenance therapy is an integral component of treatment, and that patients rarely succeed with counseling or behavioral
Interventions alone. Ideally, the results of a patient’s initial assessment and evaluation should determine the medication selected for treatment. Advocates and providers mostly agreed that patients with higher opioid tolerance, longer histories of use, and unstable living situations might benefit from a more structured program with methadone. Conversely, individuals with mild-to-moderate levels of dependence and greater life stability who require less treatment oversight would be considered for first-line treatment with Suboxone. Some clinical experts also suggested that naltrexone may be an effective first-line treatment option for individuals with short histories of opioid use who access treatment early.

Unfortunately, significant treatment capacity constraints make matching patients to medication on goodness of fit a luxury; instead, the treatment choice is often dictated by availability of the limited options. Moreover, many physicians have little experience working with methadone even though the literature supports it as an effective treatment option. The tightly regulated environment of OTPs segregates methadone treatment from the rest of mainstream medicine and makes for an unattractive treatment choice for many patients and physicians.

Given concerns for patient safety, many clinicians interviewed condone policies for compliance monitoring and random “call backs” to prevent abuse and diversion. (“Call backs” refers to the practice of randomly selecting patients with take-home medication privileges to return to clinic and present the medication dose in its original bottle.) Other clinicians suggested that strict policies for MAT serve to reinforce stigma that individuals with dependence lack self-will and are criminals.

4. Strategies for dosing and tapering should engage the patient and adopt an individualized approach.

Experts emphasized that for patients receiving MAT, no standardized approach for dosing and tapering will work for all patients, and therefore the level at which patients receive medication must be individualized. Experts acknowledged that though clinicians generally do not want to keep patients on medication indefinitely, there is little consensus on whether or how best to taper patients off maintenance therapy. Standardized treatment cut-offs are generally regarded as counterproductive, and experts reported that even when patients taper and attempt to withdraw from MAT, many ultimately go back on medication or relapse to illicit drug-seeking behaviors.

Some programs with success implementing a tapering strategy suggest adopting a gradual approach that slowly weans patients off of medication over the course of several months. Others emphasized the importance of performing an evaluation with each patient to determine his or her readiness for a taper. Experts shared anecdotally that tapers tend to be most successful in patients with less severe dependency who have a supportive environment (e.g. stable relationships and living environment, active employment, etc.). Stakeholders in Maine, where treatment programs
are required to attempt to wean patients on Suboxone to a lower dose within two years as a condition for reimbursement, have found tapering boosts patients’ self-confidence and engagement in their treatment plan. Under this model, patients that cannot tolerate a lower dose are allowed to return to a higher dose for as long as clinically appropriate. Other programs have suggested a “blind taper,” suggesting that patients being kept unaware of where they are in dosing helps. Some clinical experts also highlighted naltrexone as a crucial tool for tapering, as it blocks the patient’s ability to feel “high.” However, providers recognized that only a limited number of patients are good candidates for naltrexone given the requirements to be opioid-free for at least seven days and the motivation necessary to avoid the “high.” Ideal candidates for taper with this therapy tend to be patients that have lower severity baseline dependence, higher psychosocial stability, and a non-using social network. Experts also acknowledged an opportunity for naltrexone to support opioid-dependent individuals at risk for relapse who are exiting the controlled environment of the corrections system and therefore may be opioid-free for the requisite timeframe.

Providers underscored the difficulty of balancing concerns for diversion with providing a dose high enough to ensure a patient does not experience withdrawal and drop out of treatment. Given the relatively high street value of Suboxone, experts recognize that some patients divert unused medication. Since diversion is such a politically charged issue, clinicians found it difficult to achieve clarity on appropriate dosing for different MAT options.

5. Treatment for opioid dependence requires comprehensive, team-based care with collaboration across health care providers.

Experts agree that patients with opioid dependence require comprehensive health care services that address the full range of co-occurring clinical, social, and environmental factors surrounding dependence. Stakeholders recognized housing support, wellness services, substance abuse education, occupational rehabilitation, transportation, and legal support among the social services important for patient success.

Physician-led, team-based care allows treatment centers to provide a range of services among a shared network of providers, often within the same facility, which experts noted helps improve patient retention. The multi-disciplinary care team may be composed of psychiatrists, family physicians, psychologists, counselors, social workers, and other complementary practitioners that coordinate care and integrate with other medical and psychiatric services, as necessary. Patient advocates and clinicians emphasized the importance of peer-led recovery support that addresses techniques for relapse prevention to support patient success. Interviewees also regarded opportunities for family therapy, support, and involvement as important components of treatment.
For programs where it is not possible to provide the full spectrum of services that opioid-dependent patients require on-site, a strong referral network with local mental health providers and other social agencies is critical, as well as a robust case management system that tracks patients’ progress and helps coordinate services for them as they access treatment.

Treatment programs across New England have adopted innovative approaches to care integration. For example, some practices require patients to sign HIPAA release forms upon admission so that practitioners can openly communicate and discuss treatment progress for shared patients. Other programs have developed a system of communication across all treating providers, requesting that primary care physicians and pain management specialists prescribing benzodiazepines fill out information sheets that notify the addiction specialist. Finally, some practices hold weekly meetings for all care team members that discuss each patient’s progress, how to prevent patient dropouts, and how services can be better integrated.

Clinical experts underscored, however, that coordinating care is highly difficult given how isolated this patient population is in some states, and how different treatment systems tend to function in silos. Experts noted that the regulatory environment for substance abuse services makes it a challenge to adequately monitor and transition patients between different care systems.

8.2 Improving Access to Treatment and Quality of Care

1. Innovative solutions are needed to recruit, train, and retain qualified physicians to the field of addiction medicine.

Recruiting and retaining enough qualified physicians to meet the demand for opioid dependence services remains one of the most significant challenges confronting New England states. One treatment program noted that many OTPs in the region are operating at such high capacity that it is impossible to see a patient for more than five minutes at a time. Treatment waiting lists are long, and admitted patients often drive over two hours to receive care. According to the stakeholders interviewed, federal legislation limiting the number of patients that physicians can treat with Suboxone, strict licensing regulations for OTPs, and public hostility to establishing new treatment centers have significantly contributed to the shortage of providers offering addiction treatment. Despite the effects of patient thresholds on treatment access, some experts acknowledged the need for regulations to avoid “buprenorphine mills,” or practices that prescribe mass quantities of opioid dependence medication with little to no patient oversight.

Stakeholders emphasized the need for more targeted efforts to recruit physicians to addiction medicine. Experts felt that practicing physicians are unlikely to be willing to go through the extra
training requirements to treat with Suboxone. Physicians recommended that young doctors receive more exposure to addiction medicine in medical school and that treatment of substance abuse be incorporated as a standard part of residency training to help recruit more professionals to the field.

Even with excess demand, stakeholders noted that many DATA 2000 waivered physicians are not prescribing to capacity or at all. According to the experts interviewed, some practices have insufficient resources to address the full scope of behavioral and psychosocial needs associated with addiction, where others fear risk of diversion and potential abuse of medications. However, some experts noted that provider concerns for managing to the cap of 30 or 100 patients may not be justified, as these levels are well below the standard caseload for many physicians.

Policy/Practice Innovation: Clean Slate Centers, a collection of outpatient addiction centers in Massachusetts

In Massachusetts, a network of office-based addiction treatment programs called Clean Slate Centers has attempted to increase the number of DATA 2000 waivered physicians prescribing at capacity. At Clean Slate Centers, licensed prescribers are hired as part-time physicians who treat patients with Vivitrol or Suboxone. In addition to prescribing treatment, physicians review patient charts, conduct group medical visits, and answer questions from staff regarding patient management. Full-time clinical and supportive staff at Clean Slate Centers manage all other aspects of care, allowing physicians to increase their prescribing capacity beyond their main clinic. A full-time physician and nurse practitioners meet with patients monthly and weekly, respectively. Clean Slate Centers manage ongoing training and patient referrals for behavioral and psychosocial supportive services. According to program leadership, the model has allowed physicians previously limiting treatment to 10 patients at a time to increase their capacity to treat 90 patients at once.

Policy/Practice Innovation: Use of technology and telemedicine to expand access to treatment

Researchers in Vermont have recently received National Institutes of Health (NIH) funding to make use of a new computerized device called the Med-O-Wheel to help patients on treatment waiting lists access some level of medication-assisted treatment. The device is for take-home use and dispenses a single dose of buprenorphine for a limited two-hour window each day, making it difficult for patients to abuse medication. The transparent back to the device also allows physicians to monitor diversion. Patients receiving buprenorphine through the Med-O-Wheel will also receive telephone-based monitoring and support that provides daily check-ins, documents patient cravings, and refers patients to other needed resources. The goal of this model is to expand patient access by offering an alternative safe delivery option for medication, thereby increasing the willingness of physicians with concerns for diversion to provide treatment.
2. Regulations that significantly limit the number of treatment options available for patients should be reconsidered and revised to better address the need for addiction services.

There was sentiment among the stakeholders interviewed that restrictions in the area of addiction medicine are disproportionate to regulations in all other fields of medicine and serve to reinforce stigma and prevent the provision of high quality, responsive treatment. Experts felt strongly that regulations that isolate treatment with methadone from the rest of clinical care and place restrictions on the number of patients served with buprenorphine-containing medications must be relaxed to address the overwhelming need for opioid addiction services in New England.

Some clinical experts suggested extending methadone treatment to office-based use, as described in the King and Harris 2006 pilot studies in Section 6, as a means of expanding access to care. Others suggested removing patient caps for treatment with buprenorphine or Suboxone altogether. Other physicians felt the scope of DATA 2000 should be broadened to allow qualified psychiatric nurse practitioners to prescribe buprenorphine-containing medications. Clinical experts argued that current prescribing restrictions serve to reinforce the need for a black market for Suboxone where patients can self-medicate or at least replace the use of heroin and other long-acting drugs.

3. Innovative approaches that triage patients to appropriate levels of care are needed to support patient-centered treatment and allow for more capacity in the system.

Policymakers and treatment centers in New England are considering ways to allocate resources more effectively to manage the growing numbers of opioid-dependent patients. Some treatment programs have established triage systems in which patients receive short-term intensive outpatient care until stabilized, and then are referred outward to other outpatient practices for lower levels of ongoing care and MAT. Vermont is the only state in New England that is attempting to apply this type of integrated treatment continuum on a system-wide level.
Policy/Practice Innovation: Vermont “Hub and Spoke” Model

Vermont is employing a coordinated system-wide model for triaging patients with opioid dependence to appropriate levels of care. The goal for this model is to support patient-centered treatment while more effectively distributing resources to allow for greater capacity in the system. Called the “Hub and Spoke” model, this system makes use of specialty treatment centers (“hubs”), as well as federally-qualified health centers, patient-centered medical homes, and other practices with physicians licensed to prescribe Suboxone (“spokes”). Patients begin treatment for opioid dependence centrally at the “hub,” where they receive a period of intense treatment composed of comprehensive assessment, MAT, and other supportive services for an initial stabilization period. Once stabilized, patients are referred outward to a “spoke” for ongoing care and maintenance with Suboxone. Clinically complex patients may continue to receive care at the “hub,” or are referred elsewhere for inpatient or rehabilitation services if more intensive care is deemed appropriate. Stable patients receive ongoing care at the “spoke,” which typically involves a prescribing physician, nurse, case manager, and counselor-led care team that monitors treatment adherence, provides counseling, supports contingency management, and coordinates patient access to other recovery supports as needed. This model is being implemented in stages and is not working perfectly yet, as the average spoke maintains a small number of patients and not all licensed physicians are prescribing to capacity.

4. More streamlined processes for prior authorization of Suboxone and Vivitrol are needed to serve patients, pharmacists, and physicians more efficiently.

Strict prior authorization criteria establish an additional layer of regulation that many stakeholders feel create another barrier to treatment. Clinicians interviewed underscored the need for more efficient prior authorization processes for Suboxone and Vivitrol that would better serve patients, pharmacists, and physicians. At present, some payers require prescribing physicians to call in patient information and answer a series of questions that some clinicians interviewed feel could easily be addressed through Fax. Though experts agreed that prior authorization requirements have validity to ensure quality prescribing, many felt that they ultimately serve as another obstacle to providing high quality treatment. Many patients wait until they are down to one or two pills before refilling their prescription, and prior authorization requirements mean that some patients are unable to receive their medication when needed. Physicians suggested that payers provide “fast-track” prior authorization processes for reliable prescribers. Doing so would maintain protections against physicians that are not prescribing in good faith, but allow those with a demonstrated high quality prescribing record to treat patients as efficiently as possible.

Clinicians also mentioned the need to relax other coverage criteria that serve as deterrents to care, such as regular urine testing for patients with long histories of successful maintenance therapy. Experts emphasized that strict protocols and regular testing are important in the initial phases of treatment, but they reinforce the stigmatization of opioid-dependent patients by requiring ongoing monthly testing of individuals who have been stable on treatment for many years.
9. Questions and Discussion

Following the public CEPAC meeting on June 20, 2014, this section will be completed to capture the discussion of the Council members regarding the evidence, specifically around the Questions to Guide Discussion (questions for deliberation are posted for public comment at cepac.icer-review.org).
References

Blue Cross Blue Shield of Vermont. Rx management programs for Vermonter. http://www.bcbsvt.com/provider/eligibility-benefits/rx-management-programs/lut/p/a1/idBDsIglEAXQs_QEFeCQLrFqYSmxBq1sDkURksL4_ltXRmq1dIN8n5-ZkggQldfKO23tO1i-dhD_JEgQjIIiKYN4dd8P3mni40YPjO3B-u4TgDBuKgGj_L4Mjpr0TV5vyVydXmUxePwY-g8kTFbsZiNA5zkAZrlA5dz8OEH1x8xSO3ifYNkW10U791mQPMl/dJ5/d5/L2d/QSvUuUT3QS80SmFL1o2XzExODAXMjgy5ThENTEwSVY4Qw5R7mME4W/. Accessed April, 2014.

Center for Substance Abuse Treatment. Medication-Assisted Treatment for Opioid Addiction in Opioid Treatment Programs. Treatment Improvement Protocol (TIP) Series 43. DHHS publication no. (SMA) 12-4214. Rockville, MD: Substance Abuse and Mental Health Services Administration (SAMHSA); 2005.

Cigna. Pharmacy Resources. https://cignaforhcp.cigna.com/web/public/resourcesGuest/lu/p/b1/hY7LboJAGIWFxQcw8xOL4JibuY6Cw-DAxpBl2eqULck48_Qdm25tz-4k37mgCjFUXeuv9Uj7671-eGr9Xhnm2x1BD4uofKYQqDqBgyAhMUIUCoAnsiC_IfxOdi5Fqzw2JkiXSmvWZwDsbdsGsBoEMSvU7GntrmUv14PhqUz1U-vH6jboLq0qfWwY8X9cRm3gzo_z3g-ji_LRLCd72kt-jpCg1gvUuwOvta7HwJ5OZIpxN0HkgXAx3281ieMf5hgb1TY8T7-sGzhQm4jNS_Xsi5KGOZUG7Yo5s3tp18G8Wkd-QqfexNk3Qin0A1!/dl4/d5/L0DU0IKSmdwcGIRb0qTVUm0vb0dvZ0FFSVFoaekVDVUlnQuiBSXIGQU1od1VcUzRKUkVBeENHaUlCaU

Gruber VA, Delucchi KL, Kielstein A, Batki SL. A randomized trial of 6-month methadone maintenance with standard or minimal counseling versus 21-day methadone detoxification. Drug Alcohol Depend. 2008;94(1-3):199-206

Kennedy, AP, Phillips, KA, Epstein, DH, Reamer, DA, Schmittner, J, Preston, KL. A randomized investigation of methadone doses at or over 100mg/day, combined with contingency management. Drug Alcohol Depend. 2013;130(1-3):77-84.

Li L, Sangthong R, Chongsuvivatwong V, McNeil E, Li J. Multiple substance use among heroin-dependent patients before and during attendance at methadone maintenance treatment program, Yunnan, China. Drug Alcohol Depend. 2011;116(1-3):246-249.

Trafton JA, Humphreys K, Harris AHS, Oliva E. Consistent adherence to guidelines improves opioid dependent patients' first year outcomes. J Behav Health Serv Res. 2007;34(3):260-271.

Appendices
Appendix A

Treatment for Opioid Dependence – Literature Search & Synthesis Strategy

- De novo searches will include data published from January, 2003 to current date (i.e., studies published during the Suboxone era)
- Databases included: MEDLINE, Cochrane Central Register of Controlled Trials, PsycINFO
 1) Maintenance therapy versus assisted opioid withdrawal (detoxification)

 Detoxification will be defined as any type of assisted opioid withdrawal therapy, given up to a maximum of 30 days.

<table>
<thead>
<tr>
<th>Data source:</th>
<th>De novo search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional source for key studies:</td>
<td></td>
</tr>
</tbody>
</table>

| Included studies: | RCTs, comparative cohorts, case series with ≥100 patients |

2) Methadone versus buprenorphine versus naltrexone
 (evaluated in context of maintenance treatment only)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Updated search required: January, 2013 – present</td>
</tr>
<tr>
<td></td>
<td>• Updated search required: June, 2010 - present</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Included studies:</th>
<th>RCTs only</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Data to be sub-grouped by dosage form of buprenorphine</td>
<td></td>
</tr>
</tbody>
</table>

3) Dosing and time limits

 Evaluation of treatment approaches will include any strategy extending beyond 30 days (including long-term withdrawal approaches).

<table>
<thead>
<tr>
<th>Data source:</th>
<th>De novo search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included studies:</td>
<td>RCTs, comparative cohorts, case series with ≥100 patients</td>
</tr>
</tbody>
</table>
Other treatment requirements

(evaluated in context of maintenance treatment only)

<table>
<thead>
<tr>
<th>Data source:</th>
<th>De novo search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional sources for key studies:</td>
<td></td>
</tr>
<tr>
<td>Included studies: RCTs, comparative cohorts, case series with ≥100 patients</td>
<td></td>
</tr>
</tbody>
</table>

4) Patient Care models/ Delivery system policies

(evaluated in context of maintenance treatment only)

<table>
<thead>
<tr>
<th>Data source:</th>
<th>De novo search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included studies: RCTs, comparative cohorts, case series with ≥100 patients</td>
<td></td>
</tr>
</tbody>
</table>

5) Special populations: Adolescents

<table>
<thead>
<tr>
<th>Data source:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Updated search required: August, 2008 - present</td>
</tr>
<tr>
<td>Available sub-group data from RCTs where patient populations include participants ≤18 years</td>
</tr>
<tr>
<td>Included studies: RCTs, comparative cohorts, case series with ≥100 patients</td>
</tr>
</tbody>
</table>
Appendix B

Table 1. Summary of Federal Standards for Opioid Treatment Programs *(42 CFR Part 8)*

Certification	OTPs must receive certification from SAMHSA by meeting all pertinent federal and state laws, and receiving valid accreditation from an approved accreditation body. Certification is valid for three years with the opportunity for renewal. Programs must allow for inspections by SAMHSA, accreditation bodies, the DEA, and other federal and state employees. Programs must be separately registered with the DEA before opioid treatment medication can be dispensed or administered.
Staff	All OTPs must have a designated Program Supervisor and Medical Director. All clinical care staff must be appropriately licensed and qualified within their respective professions, and receive specific training in MAT. Each staff member must have an annual individual training plan that includes continuing education on opioid addiction.
Quality control	A formal quality control plan is required, which includes an annual review of program policies, an ongoing assessment of patient outcomes, and Diversion Control Plan.
Patient admission criteria	Admitted patients must show evidence of current dependence, have a one-year history of opioid addiction, and provide informed written consent to maintenance treatment. Patients may be exempt from meeting history criteria if they are pregnant, have been released from a penal institution within the previous six months, or have previously been admitted for treatment within the past two years. No more than two detoxification treatment episodes are allowed in a year. Patients with at least two unsuccessful detoxifications must be assessed for other forms of treatment. Patients under 18 must demonstrate at least two documented unsuccessful attempts with short-term detoxification or a drug-free treatment within a year and receive written consent from a parent or guardian before receiving treatment.
Detoxification Services Adolescents	
Treatment requirements	OTPs must provide the following services and adhere to the following treatment requirements:
 - Initial medical evaluation within 14 days of admission that includes health screening, lab testing, physical evaluation, assessment of medical and family history, evaluation of mental health status, and comprehensive assessment of patient’s social needs to determine appropriateness of treatment.
 - Specific protocol and special services for pregnant women (e.g., prenatal care, etc.). All women of childbearing potential must be tested for pregnancy before receiving services.
 - Patient assessment and individualized treatment plan with short-term goal setting that identifies the patient’s need for social supportive services
 - Education and training, including family planning and parent training |
- Counseling and education, including counseling on substance abuse and HIV/AIDS
- Social supportive services, including vocational rehabilitation, education and employment services, etc.
- Treatment of co-occurring mental health and substance use disorders
- Random drug testing (at least 8 per patient per year for patients on MAT, and monthly for patients receiving long-term detoxification)
- Discharge planning, relapse prevention, and procedures for continued care
* If services are not able to be provided at the main treatment facility, patients may be referred for treatment elsewhere

Recordkeeping and patient confidentiality

| OTPs must comply with recordkeeping and confidentiality standards at the state and federal level, and make efforts to review that patients only receive care at one OTP. Policies and procedures must be in place to comply with DEA standards for storage, dispensing, labeling, and administering of opioid medication. |

Medication administration and dispensing

| Patients receiving methadone must take medication under observation. Only adequately licensed professionals or practitioners under supervision of an appropriately licensed professional can administer or dispense medication. OTPs shall only use opioid agonist medications approved by the FDA (methadone, buprenorphine, and buprenorphine combination products). Methadone must only be dispensed in the oral form, the initial dose of which shall not exceed 30mg or a total dose of 40mg in the first day. |

Detoxification and Tapering

| Programs may initiate involuntary or voluntary supervised withdrawal from MAT. Medically supervised withdrawal must follow a humane schedule following best clinical judgment. Patients may decide to taper and withdraw from treatment voluntarily, even if against the advice of physicians. Programs may also administratively discharge a patient from MAT in the event of nonpayment of fees, disruptive patient conduct, or incarceration or other confinement. Under these circumstances, programs should refer or transfer the patient to a suitable alternative program. |

Take-home use

| The medical director may dispense methadone or buprenorphine-containing medications for take-home use after assessing and documenting a patient’s responsibility and stability to receive unsupervised treatment. The following criteria must be met for each modality: |

Methadone

| The patient must be absent of recent drug or alcohol use, serious behavioral problems, and recent criminal activity; attend clinic regularly; have a stable home and social environment; and be able to store the medication safely. OTPs must also consider the length of time the patient has participated in comprehensive MAT. |

<p>| A standard dosing schedule applies, ranging from a single dose a week for take home use in the first 90 days to a month supply after two years of continuous treatment. Further exemptions may be permitted on occasion for patients with transportation hardships, disabilities, employment issues, etc. |</p>
<table>
<thead>
<tr>
<th>Buprenorphine and Suboxone</th>
<th>The patient must be able to store medication safely.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interim Maintenance</td>
<td>The medical director may place patients on a treatment on an interim maintenance program for 120 days allowing patients to receive administered medication daily under observation without meeting other requirements for counseling, or other rehabilitative or social services. OTPs must receive special approval from SAMHSA before establishing an interim maintenance program.</td>
</tr>
</tbody>
</table>
Table 2. Overview of state licensing requirements for facilities providing substance abuse treatment in New England.*†

* Substance abuse facilities include OTPs, outpatient facilities providing MAT with buprenorphine-containing products, counseling, and/or detoxification services, residential rehabilitation programs, and inpatient detoxification programs.
† Requirements listed in Table are in addition to conditions for licensing set forth by federal agencies, including SAMHSA and the DEA. All federal requirements for OTPs and DATA 2000 apply to substance abuse facilities providing MAT or detoxification in New England states.

<table>
<thead>
<tr>
<th>State</th>
<th>Required Program Staffing/Training</th>
<th>Required Services/Treatment Protocol</th>
<th>Required Program Policies/Procedures</th>
<th>Agency Oversight</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>All:</td>
<td>All:</td>
<td>All:</td>
<td>Department of Public Health:</td>
</tr>
<tr>
<td></td>
<td>• Adequate supervision by licensed practitioners for all staff</td>
<td>• Comprehensive patient assessment</td>
<td>• Annual program evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Clinical supervisor</td>
<td>• Individualized treatment plan with continuous review</td>
<td>• Admissions, discharge, and referral protocols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Executive Director</td>
<td>Facilities providing detoxification, residential treatment, or MAT:</td>
<td>• Rules for medication administration, including policies for supervision, record keeping, inspection, monitoring, labeling, and disposing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facilities providing detoxification, residential treatment, or MAT:</td>
<td>• Physical examination and medical history within 24 hours of admission</td>
<td>• Treatment documentation and data reporting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Medical director</td>
<td>• Diagnostic testing within 72 hours of admission</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Registered nurse</td>
<td>• Initial drug urinalysis and eight additional random urine tests in the first year. Patients receiving treatment for <1 year receive a minimum of four urine tests annually.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Licensed pharmacist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Licensed counselors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Psychiatrist or psychologist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>All:</td>
<td>All:</td>
<td>All:</td>
<td>Office of Substance Abuse:</td>
</tr>
<tr>
<td></td>
<td>• Adequate supervision by licensed practitioners for all staff</td>
<td>• Comprehensive patient intake assessment to determine appropriateness of treatment, patient’s mental health history, and patient health risks</td>
<td>• Patient admission criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Medical director</td>
<td>• Individualized treatment plan with continuous review</td>
<td>• Rules for medication administration, including policies for supervision, record keeping, inspection, monitoring, labeling, and disposing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Licensed counselors</td>
<td></td>
<td>• Risk management and quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minimum of 1.5 clinical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detoxification facilities and OTPs</td>
<td>Residential treatment:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary team, including 24-hour physician support</td>
<td>Vocational and life skills training</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol and drug counselor</td>
<td>Transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All staff required to complete intensive training on opioid dependence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required ratio of counselor to patients (no more than 50 patients per counselor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case management/referrals for continued care</td>
<td>Individual/Group/Family counseling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug and alcohol education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual/Group/Family counseling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential treatment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTPs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprehensive initial physical medical examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual treatment plan with dosage program</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug testing every 30 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum take-home dose allowed is for 6 days of treatment (after 361 days of continuous treatment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 (Induction): 45 day duration; 4 hours of counseling; goal to manage withdrawal symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2 (Acute): 60 day duration; 6 hours of counseling; goal to increase dose to eliminate cravings/withdrawal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3 (Rehabilitation): 90 day duration; 6 hours of counseling; drug testing; goal to eliminate illicit drug use and amelioration of withdrawal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 4 (Supportive care): ongoing 90 day intervals; 3 hours of counseling; goal of stable living situation and income, with no criminal involvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 5 (Medical Maintenance): ongoing 90 day intervals; 1 hour of counseling; goals of 2 years of continuous treatment, adequate social support system and stability in life</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>improvement procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waiting list that ensures patients are screened, referred, and prioritized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedures for care coordination and referrals, including policies for treatment plan reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge planning and treatment termination policies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan for treatment follow-up and aftercare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment documentation and data reporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTPs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum of 500 patients, unless a waiver is permitted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmation from State that patient is not being treated by any other OTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All:</td>
<td>Adequate supervision by licensed practitioners for all staff</td>
<td>Comprehensive patient intake assessment to determine appropriateness of treatment, patient’s mental health history, and patient health risks</td>
<td>Risk management and quality improvement plan</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Monthly training sessions</td>
<td>Individualized treatment plan with continuous review</td>
<td>Patient admission criteria</td>
<td>Patient admission criteria</td>
<td></td>
</tr>
<tr>
<td>Multi-disciplinary care team</td>
<td>Plan for discharge, transitional, and after care supports</td>
<td>Rules for medication administration, including policies for supervision, record keeping, inspection, monitoring, labeling, and disposing</td>
<td>Rules for medication administration, including policies for supervision, record keeping, inspection, monitoring, labeling, and disposing</td>
<td></td>
</tr>
<tr>
<td>Detoxification:</td>
<td>Case management/referrals for continued care</td>
<td>Discharge planning and treatment termination policies</td>
<td>Discharge planning and treatment termination policies</td>
<td></td>
</tr>
<tr>
<td>Medical Director</td>
<td>Drug and alcohol education</td>
<td>Plan for treatment follow-up and aftercare after discharge</td>
<td>Plan for treatment follow-up and aftercare after discharge</td>
<td></td>
</tr>
<tr>
<td>Clinical supervisor</td>
<td>Mental health services, including psychopharmacology</td>
<td>Treatment documentation and data reporting</td>
<td>Treatment documentation and data reporting</td>
<td></td>
</tr>
<tr>
<td>Licensed psychiatrists or psychologist</td>
<td>Relapse prevention/Recovery maintenance Detoxification:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registered nurse, nurse practitioner, or physician assistant</td>
<td>Comprehensive biopsychosocial assessment including appropriate screening, mental health evaluation, and assessment of substance use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case managers, case aides, or practical nurse</td>
<td>Outpatient: 9 hours of detoxification per week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ob/gyn if serving pregnant women</td>
<td>Inpatient: 4 hours of detoxification programming daily</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outpatient Counseling:</td>
<td>Outpatient counseling:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior clinician</td>
<td>Individual/Group/Family therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensed psychiatrist or psychologist</td>
<td>Day treatment:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5 hours of services daily, including counseling, psychoeducational groups, and family therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTPs:</td>
<td>OTPs:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confirmation from State that patient is not being treated by any other OTP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Monthly drug screens for patients receiving detoxification for more than 30 days
- 15 drug screens a year for patients receiving MAT
- Maximum take-home dose for treatment is 13 doses every two weeks following 18 months of treatment. Take home doses must be dispensed in locked containers.
- Patients that voluntarily terminate treatment must be provided with supervised withdrawal services, relapse prevention, and referrals for continued care
- Medical withdrawal rate must be determined by the medical director and consider the patient’s preferences and clinical record

Adult Residential Rehabilitation:
- Daily clinical services
- Advocacy/Social support
- 4 hours of nursing services daily (transitional homes only)
- Transportation
- Monitoring
- Education and crisis services

<table>
<thead>
<tr>
<th>RI</th>
<th>All:</th>
<th>All:</th>
<th>All:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adequate supervision by licensed practitioners for all staff</td>
<td>Initial clinical phone screening to determine need for assessment</td>
<td>Patient admission criteria</td>
</tr>
<tr>
<td></td>
<td>50% of direct care staff will be licensed in mental health and addictions</td>
<td>Comprehensive patient intake assessment to determine appropriateness of treatment, patient’s mental health history, and patient health risks</td>
<td>Rules for medication administration, including policies for supervision, record keeping, inspection, monitoring, labeling, and disposing</td>
</tr>
<tr>
<td></td>
<td>Psychiatrist (on site or through consultation)</td>
<td>Individualized treatment plan with continuous review</td>
<td>Procedures for care coordination and referrals, including policies for treatment plan reviews</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comprehensive social supports for patients with</td>
<td>Discharge planning and treatment</td>
</tr>
</tbody>
</table>

Source: Department of Behavioral Healthcare, Developmental Disabilities, and Hospitals
<table>
<thead>
<tr>
<th>Detoxification facilities and OTPs:</th>
<th>Outpatient facilities:</th>
<th>Intensive outpatient facilities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Medical director</td>
<td>• Individual/group/family counseling</td>
<td></td>
</tr>
<tr>
<td>• Registered nurse with 2 years experience in substance abuse</td>
<td>• Psychotherapy</td>
<td></td>
</tr>
<tr>
<td>• At least 1 licensed nurse per 25 patients</td>
<td>• Medication treatment and review</td>
<td></td>
</tr>
<tr>
<td>• Counseling staff must be licensed chemical dependency professionals</td>
<td>• Education</td>
<td></td>
</tr>
<tr>
<td>• Required annual training in detoxification for nurses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Case managers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detoxification facilities:
- Each patient must be assigned to a primary counselor.

OTPs:
- Confirmation from State that patient is not being treated by any other OTP.
- No person under 16 may be admitted without prior written approval from the State Methadone Authority.
- Written policies for drug testing.
- Daily reports on admissions, transfers, and discharges.
- Standardized method that includes use of photograph to identify each individual before dispensing medication.
- Buprenorphine must be dispensed in sublingual tablets.

Required overdose prevention education

Detoxification facilities and OTPs:
- Monthly pregnancy testing for women receiving buprenorphine.
- Annual medical examination.
- Individual/group/family counseling.
- Minimum of one hour individual counseling monthly in the first year of treatment.
- Two hours of monthly individual counseling for individuals receiving long-term detoxification.
- After two years of treatment, patient may receive up to six doses of medication. After three years, patients may reduce program attendance to twice monthly (14-day take-home dose). After four years, patient may receive monthly take-home doses of medication.

Outpatient facilities:
- Case management.
- Education.

Intensive outpatient facilities:
- Minimum of nine hours per week of treatment services, including at least one individual counseling session on a daily basis.

OTPs:
- Plan for treatment follow-up and aftercare.
- Treatment documentation and data reporting.

Detoxification facilities:
- Each patient must be assigned to a primary counselor.

OTP termination policies:
- Confirmation from State that patient is not being treated by any other OTP.
- No person under 16 may be admitted without prior written approval from the State Methadone Authority.
- Written policies for drug testing.
- Daily reports on admissions, transfers, and discharges.
- Standardized method that includes use of photograph to identify each individual before dispensing medication.
- Buprenorphine must be dispensed in sublingual tablets.
<table>
<thead>
<tr>
<th>VT</th>
<th>Facilities providing detoxification services or MAT:</th>
<th>Facilities providing detoxification services or MAT:</th>
<th>Facilities providing detoxification services or MAT:</th>
<th>Vermont Dept. of Health:</th>
</tr>
</thead>
</table>
| | • All practitioners must be adequately trained and certified
 • Practitioners providing direct behavioral health services must be a licensed clinical professional (e.g. psychologist, psychiatrist, LICSW, etc.) and must possess certification in substance abuse training | • Comprehensive patient intake assessment to determine appropriateness of treatment, patient’s mental health history, and patient health risks.
• Comprehensive psychosocial assessment
• Individualized treatment plan with continuous review
• Comprehensive social supports for patients with co-occurring disorders
• Opportunities for family involvement in therapy, as clinically appropriate
• Provision or referral to parenting skills training or childcare services
• Dosing of MAT cannot be adjusted to reinforce positive behavior or punish negative behavior, unless the patient is non-compliant with program expectations and taper forms part of a medically-assisted withdrawal from treatment.
• Patients that voluntarily terminate treatment should be referred to increased counseling services and referred to peer recovery support services.
• Medical withdrawal rate must be determined by the medical director and consider the patient’s preferences and clinical record | • Risk management and quality improvement procedures
• Programs must register with the Vermont Prescription Drug Monitoring System
• Recordkeeping
• Discharge planning, continued care, and treatment termination policies | Source |

Note: Licensing requirements for substance abuse facilities in New Hampshire were not publicly available.
Appendix C

Figures 1-6. Map of available substance abuse facilities and office-based Suboxone programs in New England states

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>substance abuse facilities</td>
</tr>
<tr>
<td>Blue</td>
<td>office-based programs</td>
</tr>
</tbody>
</table>

Connecticut

[Map of Connecticut showing the distribution of substance abuse facilities and office-based Suboxone programs]
Red: substance abuse facilities

Blue: office-based programs
Massachusetts

Red: substance abuse facilities
Blue: office-based programs
New Hampshire

Red: substance abuse facilities
Blue: office-based programs
Rhode Island

Red: substance abuse facilities
Blue: office-based programs
Vermont

Red: substance abuse facilities

Blue: office-based programs