Poly ADP-Ribose Polymerase (PARP) Inhibitors for Ovarian Cancer

Public Meeting – September 14, 2017
Welcome and Introduction

• Why are we here today?
 • Innovation promising substantial benefits to patients and their families

 • “[Two thirds] of women are diagnosed in advanced stage where there is no hope of cure, remissions become increasingly shorter, and then the cancer becomes a chronic disease. Chronic, in the case of [ovarian cancer], means that you live on an increasingly limited menu of chemo and clinical trials along with their host of side effects, praying that each one will hold you for a long time while knowing that the cancer ultimately becomes resistant and you’ll need to find something new.”
 -- Ovarian Cancer Survivor

• The approval of Lynparza marked the first new treatment for ovarian cancer in six years. ‘The investment made in this personalized approach to cancer was extraordinary: a decade of research, and the participation of thousands of cancer patients enrolling in PARP inhibitor clinical trials to advance science for themselves, but also for their families.”
 -- Facing Our Risk of Cancer Empowered (FORCE)
Welcome and Introduction

• Why are we here today?
 • Treatments with new mechanisms of action often raise questions about appropriate use and price

 • Increasing health care costs affect individuals, state and federal budgets

 • Patients can have difficulty accessing drugs through insurance barriers and/or out-of-pocket costs

 • Benefit of objective evaluation and public discussion of the evidence on effectiveness and value
Welcome and Introduction

- Midwest Comparative Effectiveness Public Advisory Council (CEPAC)

- The Institute for Clinical and Economic Review (ICER)
Sources of Funding, 2017

Funding Sources - %

- Non-profit foundations: 78%
- Manufacturer grants, contracts and contributions: 10%
- Contributions from health plans and provider groups: 9%
- Government grants and contracts: 3%

ICER Policy Summit only
Welcome and Introduction

How was the ICER report on treatments for ovarian cancer developed?

• Scoping with guidance from patient groups, clinical experts, manufacturers, and other stakeholders
• Internal ICER staff evidence analysis
• University of Colorado cost-effectiveness modeling
• Public comment and revision
• Clinical expert report reviewers
 • Gini Fleming, MD
 • Andrea Wahner Hendrickson, MD

• How is the evidence report structured to support CEPAC voting and policy discussion?
Goal: Sustainable Access to High-Value Care for All Patients

Long-Term Value for Money
- Comparative Clinical Effectiveness
- Other Benefits or Disadvantages
- Contextual Considerations

Incremental Cost-Effectiveness

Short-Term Affordability
- Potential Budget Impact
Agenda

10:00am: Welcome and Opening Remarks
10:15 am: Presentation of the Evidence
 Evidence Review: Lipika Samal, MD
 Comparative Value: R. Brett McQueen, PhD, University of Colorado
11:15 am: Manufacturer Public Comment and Discussion
11:45 pm: Public Comments and Discussion
12:15 pm: Lunch
1:00 pm: Midwest CEPAC Deliberation and Votes
2:30 pm: Policy Roundtable
3:30 pm: Reflections and Wrap Up
4:00 pm: Meeting Adjourned
Evidence Review

Lipika Samal, MD
Harvard Medical School
Disclosures

None

Key ICER review team members

• Dan Ollendorf
• Geri Cramer
• Patricia Synnott
• Aqsa Mugal
Topic in Context

• Ovarian cancer is the most common cause of gynecologic cancer death and fifth-leading cause of cancer death in women
• Recurrence is common and the prognosis is poor after three lines of therapy
• Poly ADP-ribose polymerase (PARP) Inhibitors offer new mechanism of action
 – Oral agents initially indicated for patients with genetic mutations affecting DNA repair, such as *BRCA1* or *BRCA2* mutations
Key Terms

- **Germline BRCA mutation (gBRCAm)** – inherited deleterious mutation in either a *BRCA1* or *BRCA2* tumor suppressor gene

- **Somatic BRCA mutation (sBRCAm)** – deleterious or suspected deleterious alteration in the *BRCA1* or *BRCA2* genes that is acquired

- **Homologous Recombination Deficiency (HRD)** – An inability to efficiently repair damaged DNA.
PARP Inhibitors Overview

<table>
<thead>
<tr>
<th>PARP inhibitor</th>
<th>Indication</th>
<th>Date of FDA Approval</th>
<th>WAC per Month (USD)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olaparib (Lynparza™, AstraZeneca)</td>
<td>1) Patients with germline BRCA-mutated recurrent disease (≥3 prior lines of chemotherapy)</td>
<td>1) December 19, 2014</td>
<td>$13,679</td>
</tr>
<tr>
<td></td>
<td>2) Maintenance treatment for platinum sensitive recurrent disease</td>
<td>2) August 17, 2017</td>
<td></td>
</tr>
<tr>
<td>Rucaparib (Rubraca®, Clovis Oncology)</td>
<td>Patients with germline and/or somatic BRCA-mutated recurrent disease (≥2 prior lines of chemotherapy)</td>
<td>December 19, 2016</td>
<td>$13,940</td>
</tr>
<tr>
<td>Niraparib (Zejula™, Tesaro, Inc.)</td>
<td>Maintenance treatment for platinum sensitive recurrent disease</td>
<td>March 27, 2017</td>
<td>$14,965</td>
</tr>
</tbody>
</table>

*Price reflects the wholesale acquisition price listed on Red Book Online (Greenwood Village, CO: Truven Health Analytics. http://www.micromedexsolutions.com/. Accessed August 22, 2017), and is based on indicated dose.
Insights from Patient Groups

• Recurrent ovarian cancer a difficult diagnosis:
 – Low likelihood of cure
 – Non-specific nature of symptoms
 – Substantial toxicity of cytotoxic chemotherapies

• Psychosocial support from nurses, clinicians, family and other caregivers essential

• Financial toxicity from costs of initial surgery and multiple lines of therapy is substantial
Populations of Interest

• Population 1: “Recurrent, BRCA-mutated disease”
 – Deleterious BRCA mutation
 – Relapsed after multiple lines of chemotherapy

• Population 2: “Maintenance therapy for platinum-sensitive disease”
 – ≥ 2 prior platinum-based chemotherapy regimens
 – Complete or partial response to the most recent regimen
Interventions & Comparators: Recurrent, BRCA-mutated disease

• Interventions
 – Olaparib: *4th-line or later treatment*
 – Rucaparib: *3rd-line or later treatment*

• Comparators
 – Bevacizumab + standard chemotherapy for recurrent disease
 – Pegylated liposomal doxorubicin + carboplatin (PLD+C)
Interventions & Comparators: Maintenance therapy for platinum-sensitive disease

• Interventions
 – Olaparib
 – Niraparib

• Comparators
 – Placebo (i.e., surveillance only)
 – Bevacizumab
Results

• 15 reports of 6 studies

 − Grey literature from conference proceedings, FDA materials, and data submitted by the manufacturers included

 − Recurrent population: limited to single-arm trials

 − Maintenance population: 3 peer-reviewed studies that included a control arm
No Direct or Indirect Comparisons

• No current head-to-head studies of PARP inhibitors

• Differences in study populations precluded even formal indirect comparisons:
 – Different patient populations
 ▪ e.g. BRCA mutation type, number of prior chemotherapies, platinum sensitivity
 – Evaluation protocols for tumor assessment
 ▪ e.g. different intervals between scheduled measurements of response, assessment by investigator versus blinded independent central review
Olaparib: Recurrent, BRCA-mutated Disease

• Subgroup analysis of one single-arm trial
• Median OS 17 months
 – ~6-9 months with standard relapse therapies
• Median PFS 7 months
 – ~4-6 months with standard relapse therapies
• Health-related quality of life was not reported
Olaparib: Maintenance Therapy for Platinum-Sensitive Disease

• Two RCTs of olaparib vs. placebo
 – Phase 2: Study 19
 – Phase 3: SOLO2

• Key differences between studies
 – Dosing/formulation
 – BRCA mutation status

• No OS benefit shown in Study 19
 – Data are still immature in Phase 3 SOLO2 study
Olaparib: Maintenance Therapy for Platinum-Sensitive Disease

• Study 19: median PFS 8 months for olaparib vs. 5 months for placebo
 - Subgroup analyses of PFS
 ▪ BRCAm: 11 months vs. 4 months
 ▪ Non-BRCAm: 7 months vs. 5.5 months

• SOLO2: median PFS 19 months vs. 5.5 months

• No significant differences in quality of life
Niraparib: Maintenance Therapy for Platinum-Sensitive Disease

• One RCT of niraparib vs. placebo
• No OS benefit shown (data still immature)
• Median PFS:
 − Germline BRCAm: 21 vs. 6 months
 − Non-germline BRCAm: 9 vs. 4 months
 ▪ HRD with somatic BRCA mutation: 21 vs. 11 months
 ▪ Vs. benefit of 3-5 months without BRCAm or HRD

• No significant differences in quality of life
Rucaparib: Recurrent, BRCA-mutated Disease

- Subgroup analyses from 2 single-arm Phase 2 trials
- OS data are not yet available
- Median PFS: 10 months
 - ~6 months with standard relapse therapies
- Quality of life data not reported
Harms

- Common side effects: nausea, vomiting, anemia, thrombocytopenia, and neutropenia

- Dose reduction due to toxicity common (ranged from 22-67% across trials vs. 3% with placebo)

- FDA warnings for myelodysplastic syndrome and acute myeloid leukemia (≤2% of patients)

- PARP inhibitors seem to be better tolerated than alternative relapse therapies, some of which include black box warnings
Controversies and Uncertainties

• No survival data demonstrating benefit over historical treatment options

• Suitability of PFS to evaluate clinical benefit in maintenance setting

• No comparative data in recurrent, BRCA-mutated ovarian cancer population
Other Benefits & Contextual Considerations

• Novel mechanism of action offering possible improvement over standard relapse therapies

• Low-grade adverse effects relative to cytotoxic chemotherapy

• Simplicity of oral regimen
Public Comments

• Most appropriate comparison is head-to-head between PARP inhibitors

• ICER review minimizes benefits of progression-free survival to patients
Summary

• Single-arm data only for recurrent, BRCA-mutated disease

• PFS benefit over historical comparators and placebo
 – Maintenance therapy benefits greatest in gBRCAm and HRD

• Data on overall survival extremely limited

• Toxicity profile favorable vs. standard chemo
Evidence Ratings

<table>
<thead>
<tr>
<th>Population/PARP inhibitor</th>
<th>ICER Evidence Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent, BRCA-mutated disease</td>
<td></td>
</tr>
<tr>
<td>Olaparib</td>
<td>P/I</td>
</tr>
<tr>
<td>Rucaparib</td>
<td>P/I</td>
</tr>
<tr>
<td>Niraparib</td>
<td>I</td>
</tr>
<tr>
<td>Maintenance therapy in platinum-sensitive disease</td>
<td></td>
</tr>
<tr>
<td>Olaparib</td>
<td>C+</td>
</tr>
<tr>
<td>Niraparib</td>
<td>C+</td>
</tr>
<tr>
<td>Rucaparib</td>
<td>I</td>
</tr>
</tbody>
</table>
Long-Term Cost Effectiveness

Lead: R. Brett McQueen, PhD
Collaborators:
• Jonathan D. Campbell, PhD
• Melanie D. Whittington, PhD
• Chong Kim, MS
• Mausam Patidar, MS
Disclosures

• Collaborators:
 • Varun Kumar, ICER
 • Rick Chapman, ICER
 • Dan Ollendorf, ICER
 • Patricia Synnott, ICER
 • Geri Cramer, ICER

• Financial support provided to the University of Colorado from the Institute for Clinical and Economic Review (ICER).

• The University of Colorado researchers report no industry funding related to ovarian cancer
Objective

To model the costs and outcomes for three PARP inhibitors (olaparib, rucaparib, and niraparib) in the treatment of adult women with ovarian cancer
Methods in Brief
Interventions and Comparators

• Treatment of recurrent, BRCA-mutated disease:
 • *Olaparib* (germline-BRCA only, 4th-line or later treatment) vs. pegylated liposomal doxorubicin in combination with carboplatin (PLD+C)
 • *Rucaparib* (any deleterious BRCA mutation, 3rd-line or later treatment) vs. PLD+C

• Maintenance treatment for platinum-sensitive disease:
 • *Olaparib* (gBRCA only) vs. placebo (i.e., surveillance only)
 • *Niraparib* (gBRCA) vs. placebo
 • *Niraparib* (non-gBRCA) vs. placebo
Methods Overview

- Model: Semi-Markov model with time-dependency
- Setting: United States
- Perspective: Health Care Sector (direct medical care and drug costs)
- Time Horizon: 15 years
- Discount Rate: 3% per year (costs and outcomes)
- Cycle Length: 1 month
- Primary Outcome: Cost per quality-adjusted life year (QALY) gained
- Secondary Outcome: Cost per life year (LY) gained
Model Schematic

Recurrent, BRCA-mutated disease
- Olaparib (Lynparza™)
 - PLD + C
 - Rucaparib (Rubraca™)
 - PLD + C
- Olaparib (Lynparza™)
- Maintenance treatment for platinum-sensitive disease
 - Placebo
 - Niraparib (Zejula™)
 - Placebo

Progression-free survival (on or off treatment)§

Progression* → Death

§ Separate utility and cost inputs were incorporated for on or off treatment.

* The semi-Markov approach allows for modeling of progression defined by multiple subsequent lines of treatment (data dependent).

† Pegylated liposomal doxorubicin + carboplatin

§ Niraparib was evaluated for both gBRCAmut and non-gBRCAmut subpopulations whereas olaparib was evaluated within a gBRCAmut sub-cohort only.
Key Assumptions

• Parametric curve functions were fit separately for each population/treatment setting to extrapolate data beyond trial horizon (to 15 years).

• Assumed same likelihoods of overall survival for rucaparib and niraparib from olaparib evidence for both treatment populations.

• Assumed proportionate gain in overall survival from gain in progression-free survival from best comparative available evidence (i.e., olaparib vs. placebo in maintenance population only).

• Subsequent treatment reflected onset of symptomatic disease progression (where estimated in trial evidence).
Parameters: Drug Cost

<table>
<thead>
<tr>
<th>Drug Cost Parameters</th>
<th>WAC per unit</th>
<th>WAC per month</th>
<th>Net price per unit</th>
<th>Net price per month</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olaparib 100/150mg †</td>
<td>$112.35</td>
<td>$13,679</td>
<td>$101.12</td>
<td>$12,311</td>
<td>Assumed 10% off WAC</td>
</tr>
<tr>
<td>Niraparib 100mg †</td>
<td>$163.89</td>
<td>$14,965</td>
<td>$147.50</td>
<td>$13,469</td>
<td>Assumed 10% off WAC</td>
</tr>
<tr>
<td>Rucaparib 200/250/300mg †</td>
<td>$114.50</td>
<td>$13,940</td>
<td>$103.05</td>
<td>$12,546</td>
<td>Assumed 10% off WAC</td>
</tr>
<tr>
<td>PLD + C per mg</td>
<td>$55.51</td>
<td>$3,610</td>
<td>$49.95</td>
<td>$3,249</td>
<td>Assumed 10% off WAC</td>
</tr>
</tbody>
</table>

†Range in dose modeled based on observed trial dose modifications cited in FDA labels or clinical reviews
Parameters: Grade 3 or 4 Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Olaparib (BRCA-mutated)</th>
<th>Olaparib (maintenance)</th>
<th>Rucaparib</th>
<th>Niraparib</th>
<th>PLD + C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain</td>
<td>8%</td>
<td>0%</td>
<td>3%</td>
<td>2%</td>
<td>*</td>
</tr>
<tr>
<td>Anemia</td>
<td>18%</td>
<td>4%</td>
<td>25%</td>
<td>25%</td>
<td>7.9%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>8%</td>
<td>6%</td>
<td>11%</td>
<td>8%</td>
<td>7%</td>
</tr>
<tr>
<td>Hand-foot syndrome</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>24%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>9%</td>
<td>*</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>3%</td>
<td>6%</td>
<td>5%</td>
<td>35%</td>
<td>15.9%</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>7%</td>
<td>*</td>
</tr>
<tr>
<td>Nausea</td>
<td>3%</td>
<td>2%</td>
<td>5%</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>7%</td>
<td>8%</td>
<td>5%</td>
<td>21%</td>
<td>35.2%</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Rash</td>
<td>*</td>
<td>0%</td>
<td>0.3%</td>
<td>0.5%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0.5%</td>
<td>8%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>2%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Adverse events were included in the model only if they were grade 3 or 4 and experienced by more than 5% of the population.

Not reported
Model Results
Base-Case Results: Olaparib

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention Costs*</th>
<th>Non-Intervention Costs§</th>
<th>Total Costs</th>
<th>LYG</th>
<th>QALYs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent BRCA-mutated population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olaparib</td>
<td>$115,100</td>
<td>$43,032</td>
<td>$158,133</td>
<td>2.11</td>
<td>1.26</td>
</tr>
<tr>
<td>PLD + C (4th line or later use)</td>
<td>$20,040</td>
<td>$41,229</td>
<td>$61,269</td>
<td>0.91</td>
<td>0.59</td>
</tr>
<tr>
<td>Incremental cost per outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance therapy for platinum-sensitive disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olaparib – gBRCAm</td>
<td>$194,475</td>
<td>$53,158</td>
<td>$247,633</td>
<td>3.75</td>
<td>2.67</td>
</tr>
<tr>
<td>Placebo (Olaparib) – gBRCAm</td>
<td>$9,050</td>
<td>$46,474</td>
<td>$55,519</td>
<td>3.09</td>
<td>2.08</td>
</tr>
<tr>
<td>Incremental cost per outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Intervention costs include cost of PARP or comparator (exception placebo) and subsequent chemotherapy costs
§Non-intervention costs include supportive care costs (office visit, CT scan, blood test), adverse event costs, and end of life costs
QALY: Quality-Adjusted Life Year
LYG: Life-Year Gained

Incremental cost per outcome:
- $80,258/LYG
- $146,210/QALY
- $288,538/LYG
- $324,116/QALY
Threshold Results: Olaparib

<table>
<thead>
<tr>
<th></th>
<th>WAC per unit</th>
<th>WAC per month</th>
<th>Unit Price to Achieve $50,000 per QALY</th>
<th>Unit Price to Achieve $100,000 per QALY</th>
<th>Unit Price to Achieve $150,000 per QALY</th>
<th>Discount from WAC to Reach Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olaparib (recurrent BRCA-mutated)</td>
<td>$112.35</td>
<td>$13,679</td>
<td>$43.31</td>
<td>$73.35</td>
<td>$103.39</td>
<td>8% - 61%</td>
</tr>
<tr>
<td>Olaparib (maintenance for platinum-sensitive)</td>
<td>$112.35</td>
<td>$13,679</td>
<td>$14.44</td>
<td>$30.24</td>
<td>$46.06</td>
<td>59% - 87%</td>
</tr>
</tbody>
</table>
Base-Case Results: Niraparib

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention Costs</th>
<th>Non-Intervention Costs</th>
<th>Total Costs</th>
<th>LYG</th>
<th>QALYs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance therapy for platinum-sensitive disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niraparib – gBRCAm</td>
<td>$181,077</td>
<td>$62,348</td>
<td>$243,461</td>
<td>3.86</td>
<td>2.77</td>
</tr>
<tr>
<td>Placebo (Niraparib) – gBRCAm</td>
<td>$5,027</td>
<td>$46,474</td>
<td>$51,502</td>
<td>3.09</td>
<td>2.12</td>
</tr>
<tr>
<td>Incremental cost per outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niraparib – non-gBRCAm</td>
<td>$122,106</td>
<td>$53,203</td>
<td>$175,310</td>
<td>2.59</td>
<td>1.84</td>
</tr>
<tr>
<td>Placebo (Niraparib) – non-gBRCAm</td>
<td>$5,200</td>
<td>$43,144</td>
<td>$48,344</td>
<td>2.59</td>
<td>1.77</td>
</tr>
<tr>
<td>Incremental cost per outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Incremental cost per outcome

- Niraparib – gBRCAm: $245,092/LYG, $291,454/QALY
- Niraparib – non-gBRCAm: Not estimable, $1,907,822/QALY
Threshold Results: Niraparib

<table>
<thead>
<tr>
<th></th>
<th>WAC per unit</th>
<th>WAC per month</th>
<th>Unit Price to Achieve $50,000 per QALY</th>
<th>Unit Price to Achieve $100,000 per QALY</th>
<th>Unit Price to Achieve $150,000 per QALY</th>
<th>Discount from WAC Unit Price to reach WTP thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niraparib – gBRCA</td>
<td>$163.89</td>
<td>$14,965</td>
<td>$16.07</td>
<td>$43.28</td>
<td>$70.50</td>
<td>57% - 90%</td>
</tr>
</tbody>
</table>
Base-Case Results: Rucaparib

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention Costs $</th>
<th>Non-Intervention Costs $</th>
<th>Total Costs $</th>
<th>LYG</th>
<th>QALYs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent BRCA-mutated population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rucaparib</td>
<td>$202,103</td>
<td>$45,031</td>
<td>$247,135</td>
<td>2.11</td>
<td>1.41</td>
</tr>
<tr>
<td>PLD + C (3rd line or later use)</td>
<td>$23,144</td>
<td>$43,868</td>
<td>$67,012</td>
<td>1.28</td>
<td>0.80</td>
</tr>
<tr>
<td>Incremental cost per outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$217,738/LYG</td>
<td></td>
<td>$294,593/QALY</td>
</tr>
</tbody>
</table>

*Based on 2021 costs.

§Based on 2021 costs.
<table>
<thead>
<tr>
<th></th>
<th>WAC per unit</th>
<th>WAC per month</th>
<th>Unit Price to Achieve $50,000 per QALY</th>
<th>Unit Price to Achieve $100,000 per QALY</th>
<th>Unit Price to Achieve $150,000 per QALY</th>
<th>Discount from WAC Unit Price to reach WTP thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rucaparib (recurrent BRCA-mutated)</td>
<td>$114.50</td>
<td>$13,940</td>
<td>$26.09</td>
<td>$41.82</td>
<td>$57.55</td>
<td>50% - 77%</td>
</tr>
</tbody>
</table>
Tornado Diagram for olaparib vs. PLD+C (4th line or later use)

- Utility progressed disease Olaparib
- Cost per month Olaparib
- Neutropenia adverse event cost
- Utility progressed disease PLD+C
- Duration of treatment (median months) PLD+C
- Utility progression-free disease on treatment Olaparib
- Thrombocytopenia adverse event cost
- Utility progression-free disease on treatment PLD+C
- Price per course of treatment (monthly) PLD+C
- Hand, foot, mouth disease adverse event cost
- Stomatitis adverse event cost

$111,037 $121,037 $131,037 $141,037 $151,037 $161,037 $171,037 $181,037 $191,037 $201,037
Probabilistic Sensitivity Analysis Results

<table>
<thead>
<tr>
<th>Intervention</th>
<th>% Cost-Effective at $50,000/QALY</th>
<th>% Cost-Effective at $100,000/QALY</th>
<th>% Cost-Effective at $150,000/QALY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent BRCA-mutated population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olaparib vs PLD + C (4th line)</td>
<td>0.10%</td>
<td>1.70%</td>
<td>52.50%</td>
</tr>
<tr>
<td>Rucaparib vs PLD + C (3rd line)</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Maintenance therapy for platinum-sensitive disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olaparib (gBRCA) vs Olaparib Control (gBRCA)</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Niraparib (gBRCA) vs Niraparib Control (gBRCA)</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.20%</td>
</tr>
<tr>
<td>Niraparib (non-gBRCA) vs Niraparib Control (non-gBRCA)</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
Scenario Analysis Results

• Combining gBRCA and non-gBRCA data in maintenance population comparisons resulted in higher cost-effectiveness estimates than in base case

• Sensitivity analysis for olaparib PFS resulted in lower cost-effectiveness estimates than in base case but of similar magnitude

• Use of partitioned survival method produced similar results (within 10% of base-case findings).
Limitations

- Limited comparative evidence on the relationship between progression-free survival and overall survival
- Evidence to generate life-year and QALY estimates in PLD+C derived from mixed BRCA- and non-BRCA-mutated populations
- Additional costs from infusion fees or provider mark-ups for PLD+C not included
 - Model results relatively insensitive to changes in these costs
- Limited comparative evidence (i.e., single-arm data only) and model structure to generate uncertainty estimates around transition probabilities
Conclusions

• PARP inhibitors are likely to provide gains in quality-adjusted and overall survival over alternative therapies, but are not currently priced in alignment with these benefits
 – Exception: olaparib in recurrent, BRCA-mutated ovarian cancer
Public Comments Summary

• Enhanced transparency on modeling calculations (e.g., present functional forms considered for survival analysis)

• Equivalence between progression-free survival and overall survival
Appendix Slides
Parameters: Transition Probabilities

- Parametric survival curves fit to PFS and OS Kaplan-Meier data utilizing the approach described by Guyot and colleagues
- Extracted data points from digitized copies of published survival curves
- Estimated the underlying individual patient data using extracted values, number of surviving patients at each time interval, and maximum likelihood functions
- Base-case parametric function selected based on best model fit using AIC values and visual comparison
Evidence to Generate Transition Probabilities

<table>
<thead>
<tr>
<th>Transition probabilities</th>
<th>Olaparib</th>
<th>PLD+C</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progression-free to progressive</td>
<td>Kaufman et al. 2015 J Clin Oncol Figure 1</td>
<td>Pujade-Lauraine et al. and Hanker et al. Figure 2A 3(^{rd}) relapse</td>
<td>Evidence not split into multiple lines of therapy. PLD+C evidence from combination of BRCA-mutated and non-BRCA-mutated population.</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>Kaufman et al. 2015 J Clin Oncol Figure 2</td>
<td>Pujade-Lauraine et al. and Hanker et al. Figure 2B 3(^{rd}) relapse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rucaparib</td>
<td>PLD+C</td>
<td>Notes</td>
</tr>
<tr>
<td>Progression-free to progressive</td>
<td>Konecny et al. 2017 presentation Slide 14</td>
<td>Pujade-Lauraine et al. and Hanker et al. Figure 2A 2(^{nd}) relapse</td>
<td>Evidence not split into multiple lines of therapy. Overall survival from olaparib recurrent BRCA-mutated evidence. PLD+C evidence from combination of BRCA-mutated and non-BRCA-mutated population.</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>Kaufman et al. 2015 J Clin Oncol Figure 2</td>
<td>Pujade-Lauraine et al. and Hanker et al. Figure 2B 2(^{nd}) relapse</td>
<td></td>
</tr>
</tbody>
</table>
Evidence to Generate Transition Probabilities

<table>
<thead>
<tr>
<th>Transition probabilities</th>
<th>Maintenance therapy for platinum-sensitive disease</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progression-free to progressive</td>
<td>Olaparib and Placebo arms</td>
<td>Evidence split into multiple lines of therapy for olaparib only.</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>Pujade-Lauraine et al. 2017 presentation SOLO2 PFS IA curve</td>
<td></td>
</tr>
<tr>
<td>Progression-free to discontinuation</td>
<td>Single HTA submission olaparib maintenance Figure 5</td>
<td></td>
</tr>
<tr>
<td>Progressive subsequent therapy 1 to subsequent therapy 2</td>
<td>Single HTA submission olaparib maintenance Figure 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niraparib gBRCAm and Placebo arms</td>
<td>Evidence not split into multiple lines of therapy. Overall survival and discontinuation rates from olaparib applied.</td>
</tr>
<tr>
<td>Progression-free to progressive</td>
<td>Mirza et al. NEJM Figure 2A</td>
<td></td>
</tr>
<tr>
<td>Overall Survival</td>
<td>Ledermann 2016 Figure 2B</td>
<td></td>
</tr>
<tr>
<td>Progression-free to discontinuation</td>
<td>Single HTA submission olaparib maintenance Figure 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niraparib non-gBRCAm and Placebo arms</td>
<td>Evidence not split into multiple lines of therapy. Discontinuation rates from olaparib applied. Overall survival from olaparib placebo arm was applied to both arms of niraparib OS non-gBRCAm as there was no statistically significant difference between OS.</td>
</tr>
<tr>
<td>Progression-free to progressive</td>
<td>Mirza et al. NEJM Figure 2C</td>
<td></td>
</tr>
<tr>
<td>Overall Survival</td>
<td>Ledermann 2016 Figure 2C</td>
<td></td>
</tr>
<tr>
<td>Progression-free to discontinuation</td>
<td>Single HTA submission olaparib maintenance Figure 5</td>
<td></td>
</tr>
</tbody>
</table>
Parameters: Utilities (1)

<table>
<thead>
<tr>
<th>Recurrent BRCA-mutated population</th>
<th>Base Case</th>
<th>Lower Range</th>
<th>Upper Range</th>
<th>Std. Error</th>
<th>Distribution</th>
<th>Source/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progression-free disease (on treatment) [Olaparib]</td>
<td>0.77</td>
<td>0.72</td>
<td>0.82</td>
<td>0.024</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission</td>
</tr>
<tr>
<td>Progression-free disease (on treatment) [Rucaparib]</td>
<td>0.77</td>
<td>0.72</td>
<td>0.82</td>
<td>0.024</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission</td>
</tr>
<tr>
<td>Progression-free disease (on treatment) [PLD+C]</td>
<td>0.7977</td>
<td>0.7572</td>
<td>0.8382</td>
<td>0.024</td>
<td>Beta</td>
<td>Havrilesky et al. 2009</td>
</tr>
<tr>
<td>Progressed disease</td>
<td>0.50</td>
<td>0.37</td>
<td>0.63</td>
<td>0.065</td>
<td>Beta</td>
<td>Mehta et al. 2014</td>
</tr>
<tr>
<td>Maintenance therapy for platinum-sensitive disease</td>
<td>Base Case</td>
<td>Lower Range</td>
<td>Upper Range</td>
<td>Std.Error</td>
<td>Distribution</td>
<td>Source/Notes</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Progression-free disease (on treatment) [Olaparib]</td>
<td>0.77</td>
<td>0.73</td>
<td>0.808</td>
<td>0.024</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission</td>
</tr>
<tr>
<td>Progression-free disease (on treatment) [Niraparib]</td>
<td>0.77</td>
<td>0.73</td>
<td>0.808</td>
<td>0.024</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission</td>
</tr>
<tr>
<td>Progression-free (off treatment) [Olaparib]</td>
<td>0.71</td>
<td>0.66</td>
<td>0.76</td>
<td>0.024</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission</td>
</tr>
<tr>
<td>Progression-free (off treatment) [Niraparib]</td>
<td>0.71</td>
<td>0.66</td>
<td>0.76</td>
<td>0.024</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission</td>
</tr>
<tr>
<td>Progressed disease [Niraparib]</td>
<td>0.68</td>
<td>0.55</td>
<td>0.80</td>
<td>0.065</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission assumed avg of 1st & 2nd subsequent trtmt</td>
</tr>
<tr>
<td>First subsequent therapy [Olaparib]</td>
<td>0.72</td>
<td>0.58</td>
<td>0.84</td>
<td>0.065</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission</td>
</tr>
<tr>
<td>Second subsequent therapy [Olaparib]</td>
<td>0.65</td>
<td>0.52</td>
<td>0.77</td>
<td>0.065</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission</td>
</tr>
</tbody>
</table>
Adverse Event Disutilities

<table>
<thead>
<tr>
<th>Adverse Event (ICD-9-CM)</th>
<th>Base Case Disutility</th>
<th>SE</th>
<th>Lower</th>
<th>Upper</th>
<th>Distribution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia (285.9)</td>
<td>-0.022</td>
<td>0.0171</td>
<td>-0.002</td>
<td>-0.066</td>
<td>Beta</td>
<td>Tesaro data on file (non-gBRCAm overall)</td>
</tr>
<tr>
<td>Fatigue (780.71)</td>
<td>-0.0204</td>
<td>0.0161</td>
<td>-0.002</td>
<td>-0.062</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission for any grade 3/4 vs. no grade ¾</td>
</tr>
<tr>
<td>Hypertension (401)</td>
<td>-0.0204</td>
<td>0.0161</td>
<td>-0.002</td>
<td>-0.062</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission for any grade 3/4 vs. no grade ¾</td>
</tr>
<tr>
<td>Thrombocytopenia (287.5)</td>
<td>-0.015</td>
<td>0.0116</td>
<td>-0.001</td>
<td>-0.045</td>
<td>Beta</td>
<td>Tesaro data on file (non-gBRCAm overall)</td>
</tr>
<tr>
<td>Leukopenia (288.5)</td>
<td>-0.0204</td>
<td>0.0161</td>
<td>-0.002</td>
<td>-0.062</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission for any grade 3/4 vs. no grade ¾</td>
</tr>
<tr>
<td>Nausea (787.01)</td>
<td>-0.0204</td>
<td>0.0161</td>
<td>-0.002</td>
<td>-0.062</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission for any grade 3/4 vs. no grade ¾</td>
</tr>
<tr>
<td>Neutropenia (288)</td>
<td>-0.014</td>
<td>0.0137</td>
<td>-0.0004</td>
<td>-0.051</td>
<td>Beta</td>
<td>Tesaro data on file (non-gBRCAm overall)</td>
</tr>
<tr>
<td>Hand, foot, and mouth disease (074.3)</td>
<td>-0.0204</td>
<td>0.0161</td>
<td>-0.002</td>
<td>-0.062</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission for any grade 3/4 vs. no grade ¾</td>
</tr>
<tr>
<td>Stomatitis (528)</td>
<td>-0.0204</td>
<td>0.0161</td>
<td>-0.002</td>
<td>-0.062</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission for any grade 3/4 vs. no grade ¾</td>
</tr>
<tr>
<td>Rash (782.1)</td>
<td>-0.0204</td>
<td>0.0161</td>
<td>-0.002</td>
<td>-0.062</td>
<td>Beta</td>
<td>Olaparib NICE HTA Submission for any grade 3/4 vs. no grade ¾</td>
</tr>
</tbody>
</table>

*Adverse event disutilities were applied for 3 cycles in the model
Parameters: Adverse Event Costs

<table>
<thead>
<tr>
<th>Grade 3/4 Adverse Events (ICD-9-CM)</th>
<th>Base-Case</th>
<th>SE</th>
<th>Lower</th>
<th>Upper</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia (285.3)</td>
<td>$7,533</td>
<td>$10,958</td>
<td>$5</td>
<td>$38,830</td>
<td>Gamma</td>
</tr>
<tr>
<td>Fatigue (780.71)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Hypertension (401)</td>
<td>$6,903</td>
<td>$7,256</td>
<td>$125</td>
<td>$26,587</td>
<td>Gamma</td>
</tr>
<tr>
<td>Thrombocytopenia (287.5)</td>
<td>$10,607</td>
<td>$16,207</td>
<td>$3</td>
<td>$57,183</td>
<td>Gamma</td>
</tr>
<tr>
<td>Leukopenia (288.5)</td>
<td>$8,705</td>
<td>$12,202</td>
<td>$10</td>
<td>$43,381</td>
<td>Gamma</td>
</tr>
<tr>
<td>Nausea (787.01)</td>
<td>$7,007</td>
<td>$9,370</td>
<td>$14</td>
<td>$33,455</td>
<td>Gamma</td>
</tr>
<tr>
<td>Neutropenia (288)</td>
<td>$13,633</td>
<td>$22,203</td>
<td>$1</td>
<td>$77,893</td>
<td>Gamma</td>
</tr>
<tr>
<td>Hand, Foot, and Mouth Disease (074.3)</td>
<td>$4,032</td>
<td>$5,463</td>
<td>$7</td>
<td>$19,482</td>
<td>Gamma</td>
</tr>
<tr>
<td>Stomatitis (528)</td>
<td>$10,796</td>
<td>$15,551</td>
<td>$8</td>
<td>$55,154</td>
<td>Gamma</td>
</tr>
<tr>
<td>Rash (782.1)</td>
<td>$5,359</td>
<td>$7,306</td>
<td>$8</td>
<td>$26,040</td>
<td>Gamma</td>
</tr>
</tbody>
</table>

*Not estimated in HCUPnet, assumed to be $0
Threshold Survival Results: Rucaparib

<table>
<thead>
<tr>
<th>Intervention</th>
<th>LYG</th>
<th>QALYs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLD + C (3rd line or later use)</td>
<td>1.28</td>
<td>0.80</td>
</tr>
<tr>
<td>Rucaparib (recurrent BRCA-mutated)</td>
<td>4.41</td>
<td>2.72</td>
</tr>
</tbody>
</table>
Public Comment: Manufacturer Representatives
Conflicts of interest: Receipt or potential receipt of anything of monetary value, including but not limited to, salary or other payments for services such as consulting fees or honoraria in excess of $5,000

If yes please describe the relationship below:
FORCE receives program funding from industry partners. These grants provide general support for our national outreach, education and support initiatives for the hereditary cancer community.
Donor list includes:
Clovis, Tesaro, AstraZeneca
Seana Roubinek, Survivor and Advocate

Conflicts of interest: Any relationship that could be considered a financial conflict of interest

If yes please describe the relationship below:
I am a Patient Ambassador for Snow Companies, Inc. The program is sponsored by Tesaro (a pharmaceutical company) but I am not a brand ambassador. I have the opportunity to speak to different groups of people and tell my story about my journey through ovarian cancer. Any honoraria that I am eligible to earn goes directly to charity.
Conflicts of interest:
Receipt or potential receipt of anything of monetary value, including but not limited to, salary or other payments for services such as consulting fees or honoraria in excess of $5,000

If yes please describe the relationship below:
In the past year, OCRFA has received programmatic support at the $5000+ level from the following:

- Amerisource Bergen
- AdvaMedDx
- Astra Zeneca
- BIO
- Clovis Oncology
- Gail Baird Foundation
- Genentech

- ImmunoGen
- Janssen Oncology
- Merck
- Morphotek
- Myriad
- PhRMA
- TESARO
Jill Holdren, Patient

Conflicts of interest:

None to disclose
Break for Lunch
Meeting will resume at 1:00 pm
Voting Questions
1. In patients with recurrent BRCA-mutated disease, is the evidence adequate to demonstrate that the net health benefit of treatment with olaparib is greater than that of treatment with standard chemotherapy?

A. Yes
B. No
2. In patients with platinum-sensitive disease who are eligible for maintenance therapy, is the evidence adequate to demonstrate that the net health benefit of treatment with olaparib is greater than that of surveillance alone?

A. Yes
B. No
3. In patients with recurrent platinum-sensitive, germline BRCA-mutated disease who are eligible for maintenance therapy, is the evidence adequate to demonstrate that the net health benefit of treatment with niraparib is greater than that of surveillance alone?

A. Yes

B. No
4. In patients with recurrent platinum-sensitive disease who are eligible for maintenance therapy and do not have germline BRCA mutations, is the evidence adequate to demonstrate that the net health benefit of treatment with niraparib is greater than that of surveillance alone?

A. Yes
B. No
5. In patients with recurrent BRCA-mutated disease, is the evidence adequate to demonstrate that the net health benefit of treatment with rucaparib is greater than that of treatment with standard chemotherapy?

A. Yes
B. No
6. When compared to the pegylated liposomal doxorubicin and carboplatin does olaparib, for recurrent BRCA-mutated disease offer any of the following “other benefits”? Please select all that apply.

A. Significant direct patient health benefits not adequately captured by the QALY
B. Reduced complexity that will significantly improve outcomes
C. Reduce important health disparities
D. Significantly reduce caregiver/family burden
E. Novel mechanism of action or approach….
F. Significant impact on improving return to work/overall productivity
7. Are any of the following contextual considerations important in assessing olaparib’s long-term value for money in patients with recurrent BRCA-mutated disease? Please select all that apply.

A. Care of individuals with condition of high severity
B. Care of individuals with condition with high lifetime burden of illness
C. First to offer any improvement
D. Compared to comparator, there is significant uncertainty about long-term risk of serious side effects
E. Compared to the comparator, significant uncertainty about magnitude or durability of the long term benefits of this intervention
8. Given the available evidence on comparative clinical effectiveness and incremental cost effectiveness, and considering other benefits and contextual considerations, in patients with recurrent BRCA-mutated disease, what is the long-term value for money of olaparib compared with PLD+C?

A. High
B. Intermediate
C. Low
Policy Roundtable
Policy Roundtable Participants

<table>
<thead>
<tr>
<th>Policy Roundtable</th>
<th></th>
</tr>
</thead>
</table>
| **Harold Carter** | **Matthew Powell, MD**
Express Scripts | Washington University at St. Louis |
| **Susan Leighton** | **Andrea Wahner Hendrickson, MD**
Patient | Mayo Clinic |
| **Betsy Neisner** |
Patient | |
Midwest CEPAC Panel Reflections
Next Steps

• Final Report and accompanying materials expected on or before September 28, 2017

• Meeting materials and outputs: https://icer-review.org/meeting/ovarian-cancer/

For more information please visit: https://icer-review.org/programs/midwest-cepac/
Adjourn